71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in Biomaterials for Drug Delivery

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Advances in biomaterials for drug delivery are enabling significant progressin biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout. </p>

          Related collections

          Most cited references272

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knocking down barriers: advances in siRNA delivery

            Key Points RNA interference (RNAi) is a fundamental pathway in eukaryotic cells by which sequence-specific small interfering RNA (siRNA) is able to silence genes through the destruction of complementary mRNA. RNAi is an important therapeutic tool that can be used to silence aberrant endogenous genes or to knockdown genes essential to the proliferation of infectious organisms. Delivery remains the central challenge to the therapeutic application of RNAi technology. Before siRNA can take effect in the cytoplasm of a target cell, it must be transported through the body to the target site without undergoing clearance or degradation. Currently, the most effective synthetic, non-viral delivery agents of siRNA are lipids, lipid-like materials and polymers. Various cationic agents including stable nucleic acid–lipid particles, lipidoids, cyclodextrin polymers and polyethyleneimine polymers have been used to achieve the successful systemic delivery of siRNA in mammals without inducing significant toxicity. Direct conjugation of delivery agents to siRNA can facilitate delivery. For example, cholesterol-modified siRNA enables targeting to the liver. RNAi therapeutics have progressed to the clinic, where studies are being conducted to determine siRNA efficacy in treating several diseases, including age-related macular degeneration and respiratory syncytial virus. Moving forward, it will be important to pay close attention to the potential nonspecific immunostimulatory effects of siRNA. Modifications to siRNA can be used to minimize stimulation of the immune system, and an increased emphasis must be placed on performing proper controls to ensure that therapeutic effects are sequence-specific.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammasomes: guardians of the body.

              The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                July 2018
                July 2018
                May 07 2018
                : 30
                : 29
                : 1705328
                Affiliations
                [1 ]Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02142 USA
                [2 ]Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02142 USA
                [3 ]Department of Bioengineering; University of Pennsylvania; School of Engineering and Applied Science; Philadelphia PA 19104 USA
                [4 ]Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
                Article
                10.1002/adma.201705328
                6261797
                29736981
                dd63b404-8855-4833-90ba-8a33d4be07d9
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article