7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor Translated title: Simulation der Fehler bei der Unterdrückung von Xenon-Schwingungen in einem WWER-1000-Reaktor

      research-article
      1 , 1 , * , , 1
      Kerntechnik
      Carl Hanser Verlag

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Errors in suppression of xenon oscillations refer to anticipated operational occurrences. Such errors could be treated as a long-term absence of some special actions used to stabilize the power field or incorrect movements of the control and protection system absorber rod. In this study, the movement of control rod, causing maximum power tilt, has been simulated in a WWER-1000 reactor by using NJOY and MCNPX codes and also a single heated channel model for thermal hydraulic calculations. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. Analyses are based on linear heat rate of the most-powered fuel rod in the beginning of cycle and end of cycle. First, we determined the position of this most-powered fuel rod at the beginning and end of cycle separately. Then the most-powered fuel rod is segmented axially into equally spaced zones to study the effect of axial linear heat rate profile. Finally, the results have been compared with Final Safety Analysis Report of WWER-1000 reactor. It is seen that there is a great similarity between calculated and reported results.

          Kurzfassung

          Fehler bei der Unterdrückung von Xenon-Schwingungen beziehen sich auf erwartete Betriebsereignisse. Solche Fehler können bei langfristigem Ausbleiben von Maßnahmen zur Stabilisierung der Leistungsverteilung oder bei fehlehrhaften Steuerstabbewegungen auftreten. In diesem Beitrag wurde die Bewegung eines Steuerstabs in einem WWER-1000-Reaktor mit Hilfe von NJOY- und MCNPX-Codes sowie mit einem Ein-Kanal-Wärme-Modell für thermohydraulische Berechnungen simuliert. Die Ergebnisse dieses Modells wurden mit Ergebnissen von RELAP5-Berechnungen für WWER-1000-Anlagen überprüft. Die Analyse basiert auf der linearen Wärmerate des leistungsstärksten Brennstabs zu Beginn und zum Ende des Zyklus. Zuerst wurde die Position dieses Brennstabs zu Beginn und dann am Ende des Zyklus bestimmt. Danach wurde dieser Brennstab in gleich große Zonen geteilt, um den Effekt des axialen linearen Wärmeraten-Profils zu untersuchen. Schließlich wurden die Ergebnisse mit dem „Final Safety Analysis Report“ des WWER-1000-Reaktors verglichen. Dabei zeigt sich, dass es eine große Übereinstimmung zwischen berechneten und berichteten Ergebnissen gibt.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: found

          Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations

          This work deals with TRAP-KS code verification. TRAP-KS is used for coupled neutron and thermo-hydraulic process calculations of VVER reactors. The three-dimensional neutron kinetics model enables consideration of space effects, which are produced by energy field and feedback parameters variations. This feature has to be investigated especially for asymmetrical multiplying variations of core properties, power fluctuations and strong local perturbation insertion. The presented work consists of three test definitions. First, an asymmetrical control rod (CR) ejection during power operation is defined. This process leads to fast reactivity insertion with short-time power spike. As second task xenon oscillations are considered. Here, small negative reactivity insertion leads to power decreasing and induces space oscillations of xenon concentration. In the late phase, these oscillations are suppressed by external actions. As last test, an international code comparison for a hypothetical main steam line break (V1000CT-2, task 2) was performed. This scenario is interesting for asymmetrical positive reactivity insertion by decreasing coolant temperature in the affected loop.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Xenon instability study of large core Monte Carlo calculations

              One of the goals of neutronic calculations of large cores may be self-consistent distribution of equilibrium xenon through the reactor core. In deterministic calculations such self consistency is relatively simply achieved with the help of additional outer iterations by xenon, which can increase several times solution run time. But in stochastic calculation of large cores such increase is utterly undesirable, since even without these outer iterations it demands modeling of billion of histories, which in case of complicated large core may take about a day of 100 processors work. In addition the unavoidable statistical uncertainty here plays role of transient process, which excites xenon oscillations. In this work the rise of such oscillations and the way of their overcoming with the help of hybrid stochastic/deterministic calculation is studied. It is proposed to make at first single static Monte Carlo calculation of given core and to receive multi-group mesh cell characteristics for future use in operative code. This one will evaluate xenon distribution through the core, which will be equilibrium for deterministic solution and substantially close to equilibrium Monte Carlo solution, paid with enormous computing cost.
                Bookmark

                Author and article information

                Journal
                kt
                Kerntechnik
                Carl Hanser Verlag
                0932-3902
                2195-8580
                16 April 2018
                : 83
                : 2
                : 135-144
                Affiliations
                1 Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
                Author notes
                [* ] Corresponding author: E-mail: DariushRezaei@ 123456chmail.ir
                Article
                KT110829
                10.3139/124.110829
                dd6901a9-73c8-4f91-8b03-43359d9c9e46
                © 2018, Carl Hanser Verlag, München
                History
                : 7 May 2017
                Page count
                References: 16, Pages: 10
                Categories
                Technical Contributions/Fachbeiträge

                Materials technology,Materials for energy,Nuclear physics
                Materials technology, Materials for energy, Nuclear physics

                Comments

                Comment on this article