2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls.

      Science (New York, N.Y.)
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The control of RNA alternative splicing is critical for generating biological diversity. Despite emerging genome-wide technologies to study RNA complexity, reliable and comprehensive RNA-regulatory networks have not been defined. Here, we used Bayesian networks to probabilistically model diverse data sets and predict the target networks of specific regulators. We applied this strategy to identify approximately 700 alternative splicing events directly regulated by the neuron-specific factor Nova in the mouse brain, integrating RNA-binding data, splicing microarray data, Nova-binding motifs, and evolutionary signatures. The resulting integrative network revealed combinatorial regulation by Nova and the neuronal splicing factor Fox, interplay between phosphorylation and splicing, and potential links to neurologic disease. Thus, we have developed a general approach to understanding mammalian RNA regulation at the systems level.

          Related collections

          Author and article information

          Journal
          20558669
          3412410
          10.1126/science.1191150

          Comments

          Comment on this article

          scite_