+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study.

          Recent muscle biopsy studies have shown a relation between intramuscular lipid content and insulin resistance. The aim of this study was to test this relation in humans by using a novel proton nuclear magnetic resonance (1H NMR) spectroscopy technique, which enables non-invasive and rapid (approximately 45 min) determination of intramyocellular lipid (IMCL) content. Normal weight non-diabetic adults (n = 23, age 29+/-2 years. BMI = 24.1+/-0.5 kg/m2) were studied using cross-sectional analysis. Insulin sensitivity was assessed by a 2-h hyperinsulinaemic (approximately 450 pmol/l)-euglycaemic (approximately 5 mmol/l) clamp test. Intramyocellular lipid concentrations were determined by using localized 1H NMR spectroscopy of soleus muscle. Simple linear regression analysis showed an inverse correlation (r = -0.579, p = 0.0037) [corrected] between intramyocellular lipid content and M-value (100-120 min of clamp) as well as between fasting plasma non-esterified fatty acid concentration and M-value (r = -0.54, p = 0.0267). Intramyocellular lipid content was not related to BMI, age and fasting plasma concentrations of triglycerides, non-esterified fatty acids, glucose or insulin. These results show that intramyocellular lipid concentration, as assessed non invasively by localized 1H NMR spectroscopy, is a good indicator of whole body insulin sensitivity in non-diabetic, non-obese humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.

            Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans. Obese rodents exhibited hyperaminoacidemia including BCAAs. Whereas no obesity-related changes were observed in rodent skeletal muscle BCATm, pS293, or total BCKD E1alpha or BCKD kinase, in liver BCKD E1alpha was either unaltered or diminished by obesity, and pS293 (associated with the inactive state of BCKD) increased, along with BCKD kinase. In epididymal fat, obesity-related declines were observed in BCATm and BCKD E1alpha. Plasma BCAAs were diminished by an overnight fast coinciding with dissipation of the changes in adipose tissue but not in liver. BCAAs also were reduced by surgical weight loss intervention (Roux-en-Y gastric bypass) in human subjects studied longitudinally. These changes coincided with increased BCATm and BCKD E1alpha in omental and subcutaneous fat. Our results are consistent with the idea that tissue-specific alterations in BCAA metabolism, in liver and adipose tissue but not in muscle, may contribute to the rise in plasma BCAAs in obesity.
              • Record: found
              • Abstract: not found
              • Article: not found

              Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes.


                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                10 December 2010
                : 5
                : 12
                [1 ]Genome Center, University of California Davis, Davis, California, United States of America
                [2 ]Department of Nutrition Sciences, University of Alabama at Birmingham and the Birmingham VA Medical Center, Birmingham, Alabama, United States of America
                [3 ]Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, University of California Davis, Davis, California, United States of America
                [4 ]Department of Nutrition, University of California Davis, Davis, California, United States of America
                [5 ]Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
                Pennington Biomedical Research Center, United States of America
                Author notes

                Conceived and designed the experiments: SHA WTG KHL. Performed the experiments: OF WTG KHL CLH. Analyzed the data: SHA OF JWN WTG. Contributed reagents/materials/analysis tools: OF JWN WTG CLH. Wrote the paper: SHA.

                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                Page count
                Pages: 10
                Research Article
                Carbohydrate Metabolism
                Lipid Metabolism
                Metabolic Pathways
                Protein Metabolism
                Diabetic Endocrinology
                Diabetes Mellitus Type 2



                Comment on this article