Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reciprocal recognition of sifaka ( Propithecus verreauxi verreauxi) and redfronted lemur ( Eulemur fulvus rufus) alarm calls.

      Animal Cognition

      Vocalization, Animal, Tape Recording, psychology, physiology, Strepsirhini, Recognition (Psychology), Papio, Male, Lemuridae, Female, Escape Reaction, Arousal, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Redfronted lemurs ( Eulemur fulvus rufus) and Verreaux's sifakas ( Propithecus verreauxi verreauxi) occur sympatrically in western Madagascar. Both species exhibit a so-called mixed alarm call system with functionally referential alarm calls for raptors and general alarm calls for carnivores and raptors. General alarm calls also occur in other contexts associated with high arousal, such as inter-group encounters. Field playback experiments were conducted to investigate whether interspecific recognition of alarm calls occurs in both species, even though the two species rarely interact. In a crossed design, redfronted lemur and sifaka alarm calls were broadcast to individuals of both species, using the alarm call of chacma baboons ( Papio cynocephalus) as a control. Both species responded with appropriate escape strategies and alarm calls after playbacks of heterospecific aerial alarm calls. Similarly, they reacted appropriately to playbacks of heterospecific general alarm calls. Playbacks of baboon alarm calls elicited no specific responses in either lemur species, indicating that an understanding of interspecific alarm calls caused the responses and not alarm calls in general. Thus, the two lemur species have an understanding of each other's aerial as well as general alarm calls, suggesting that even in species that do not form mutualistic associations and rarely interact, common predator pressure has been sufficient for the development of heterospecific call recognition.

          Related collections

          Author and article information

          Journal
          10.1007/s10071-003-0180-0
          12827548

          Comments

          Comment on this article