24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer’s disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Crenezumab, a fully humanized anti-beta-amyloid (Aβ) immunoglobulin G4 (IgG4) monoclonal antibody, binds to both monomeric and aggregated forms of Aβ. We assessed the pharmacokinetics (PK)/pharmacodynamics (PD) of crenezumab and its interaction with monomeric Aβ(1–40) and Aβ(1–42) peptides in serum/plasma and cerebrospinal fluid (CSF) samples from the phase II ABBY and BLAZE studies and the phase Ib GN29632 study.

          Methods

          In ABBY, BLAZE, and GN29632 studies, patients with mild-to-moderate AD were treated with either placebo or crenezumab (300 mg subcutaneously every 2 weeks [q2w], or 15 mg/kg, 30 mg/kg, 45 mg/kg, 60 mg/kg, or 120 mg/kg intravenously q4w). Serum/plasma PK/PD analyses included samples from 131 patients who received crenezumab in all three studies. CSF PK/PD analyses included samples from 76 patients who received crenezumab in ABBY or BLAZE. The impact of baseline patient factors on Aβ profiles was also evaluated.

          Results

          The serum concentration of crenezumab increased in a dose-proportional manner between 15 and 120 mg/kg q4w. Total monomeric plasma Aβ(1–40) and Aβ(1–42) levels significantly increased after crenezumab administration. The mean crenezumab CSF to serum ratio was ~ 0.3% and was similar across dosing cohorts/routes of administration. No clear correlation was observed between crenezumab concentration and Aβ(1–42) increase in CSF at week 69. The target-mediated drug disposition (TMDD) model described the observed plasma concentration–time profiles of crenezumab and Aβ well. Elimination clearance (CL el) and central volume of distribution ( V cent) of crenezumab were estimated at 0.159 L/day and 2.89 L, respectively, corresponding to a half-life of ~ 20 days. Subcutaneous bioavailability was estimated at 66.2%.

          Conclusions

          Crenezumab PK was dose proportional up to 120 mg/kg, with a half-life consistent with IgG monoclonal antibodies. Our findings provide evidence for peripheral target engagement in patients with mild-to-moderate AD. The study also showed that a model-based approach is useful in making inference on PK/PD relationship with unmeasured species such as free plasma Aβ levels.

          Trial registrations

          ABBY: ClinicalTrials.gov, NCT01343966. Registered April 28, 2011. BLAZE: ClinicalTrials.gov, NCT01397578. Registered July 19, 2011. GN29632: ClinicalTrials.gov, NCT02353598. Registered February 3, 2015.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ABBY

          Objective To evaluate the safety and efficacy of crenezumab in patients with mild to moderate Alzheimer disease (AD). Methods In this phase 2 trial, 431 patients with mild to moderate AD 50 to 80 years of age were randomized 2:1 (crenezumab:placebo). Patients received low-dose subcutaneous crenezumab 300 mg or placebo every 2 weeks (n = 184) or high-dose intravenous crenezumab 15 mg/kg or placebo every 4 weeks (n = 247) for 68 weeks. Primary outcome measures were change in Alzheimer's Disease Assessment Scale–Cognitive Subscale (ADAS-Cog12) and Clinical Dementia Rating–Sum of Boxes scores from baseline to week 73. Results The primary and secondary endpoints were not met. In an exploratory post hoc analysis, a reduction in decline on the ADAS-Cog12 was observed in the high-dose group. Separation from the placebo group on the ADAS-Cog12 was greatest in the milder subsets of AD patients and reached statistical significance in the group with Mini-Mental State Examination scores of 22 to 26. In both groups, there was a significant increase in CSF β-amyloid1-42 levels that correlated with crenezumab CSF levels. The overall rate of adverse events was balanced between groups. One case of amyloid-related imaging abnormalities indicative of vasogenic edema or effusions was reported. Conclusions Although prespecified criteria for testing treatment effects were not met, these data suggest a potential treatment effect in patients with mild AD treated with high-dose crenezumab. Together with the safety profile for crenezumab, these data support the exploration of crenezumab treatment at even higher doses in patients with early AD. Clinicaltrials.gov identifier NCT 01343966. Classification of evidence This study provides Class II evidence that, for people with AD, crenezumab does not significantly improve cognition or function at 18 months. The study is rated Class II because <80% of enrolled patients completed the study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI.

            Previous studies of Aβ plasma as a biomarker for Alzheimer's disease (AD) obtained conflicting results. We here included 715 subjects with baseline Aβ(1-40) and Aβ(1-42) plasma measurement (50% with 4 serial annual measurements): 205 cognitively normal controls (CN), 348 patients mild cognitive impairment (MCI) and 162 with AD. We assessed the factors that modified their concentrations and correlated these values with PIB PET, MRI and tau and Aβ(1-42) measures in cerebrospinal fluid (CSF). Association between Aβ and diagnosis (baseline and prospective) was assessed. A number of health conditions were associated with altered concentrations of plasma Aβ. The effect of age differed according to AD stage. Plasma Aβ(1-42) showed mild correlation with other biomarkers of Aβ pathology and were associated with infarctions in MRI. Longitudinal measurements of Aβ(1-40) and Aβ(1-42) plasma levels showed modest value as a prognostic factor for clinical progression. Our longitudinal study of complementary measures of Aβ pathology (PIB, CSF and plasma Aβ) and other biomarkers in a cohort with an extensive neuropsychological battery is significant because it shows that plasma Aβ measurements have limited value for disease classification and modest value as prognostic factors over the 3-year follow-up. However, with longer follow-up, within subject plasma Aβ measurements could be used as a simple and minimally invasive screen to identify those at increased risk for AD. Our study emphasizes the need for a better understanding of the biology and dynamics of plasma Aβ as well as the need for longer term studies to determine the clinical utility of measuring plasma Aβ.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE)

              Background We investigated the effect of crenezumab, a humanized anti-amyloid-beta (Aβ) immunoglobulin (Ig)G4 monoclonal antibody, on biomarkers of amyloid pathology, neurodegeneration, and disease progression in patients with mild-to-moderate Alzheimer’s disease (AD). Methods This double-blind, placebo-controlled, randomized phase II study enrolled patients with mild-to-moderate AD and a Mini-Mental State Examination (MMSE) score of 18–26. In part 1 of the study, patients were 2:1 randomized to receive low-dose subcutaneous (SC) 300 mg crenezumab every 2 weeks (q2w) or placebo for 68 weeks; in part 2, patients were 2:1 randomized to receive high-dose intravenous (IV) 15 mg/kg crenezumab every 4 weeks (q4w) or placebo for 68 weeks. The primary endpoint was change in amyloid burden from baseline to week 69 assessed by florbetapir positron emission tomography (PET) in the modified intent-to-treat population. Secondary endpoints were change from baseline to week 69 in cerebrospinal fluid (CSF) biomarkers and fluorodeoxyglucose PET, and change from baseline to week 73 in 12-point Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-Cog12) and Clinical Dementia Rating Sum of Boxes (CDR-SB). Safety was assessed in patients who received at least one dose of study treatment. Results From August 2011 to September 2012, 91 patients were enrolled and randomized (low-dose SC cohort: crenezumab (n = 26) or placebo (n = 13); high-dose IV cohort: crenezumab (n = 36) or placebo (n = 16)). The primary endpoint was not met using a prespecified cerebellar reference region to calculate standard uptake value ratios (SUVRs) from florbetapir PET. Exploratory analyses using subcortical white matter reference regions showed nonsignificant trends toward slower accumulation of plaque amyloid in the high-dose IV cohort. In both cohorts, a significant mean increase from baseline in CSF Aβ(1–42) levels versus placebo was observed. Nonsignificant trends toward ADAS-Cog12 and CDR-SB benefits were identified in a mild (MMSE 20–26) subset of the high-dose IV cohort. No amyloid-related imaging abnormalities due to edema/effusion were observed. Conclusion The primary endpoint was not met. Exploratory findings suggest potential Aβ target engagement with crenezumab and possible slower accumulation of plaque amyloid. Studies investigating the effects of higher doses of crenezumab on amyloid load and disease progression are ongoing. Trial registration ClinicalTrials.gov, NCT01397578. Registered on 18 July 2011. Electronic supplementary material The online version of this article (10.1186/s13195-018-0424-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                yoshida.kenta@gene.com
                moein.anita@gene.com
                tobias.bittner@roche.com
                ostrowitzki.susanne@gene.com
                lin.helen@gene.com
                honigberg.lee@gene.com
                jin.jin@gene.com
                quartino.angelica@gene.com
                Journal
                Alzheimers Res Ther
                Alzheimers Res Ther
                Alzheimer's Research & Therapy
                BioMed Central (London )
                1758-9193
                22 January 2020
                22 January 2020
                2020
                : 12
                : 16
                Affiliations
                [1 ]ISNI 0000 0004 0534 4718, GRID grid.418158.1, Genentech, Inc., ; South San Francisco, CA 94080 USA
                [2 ]ISNI 0000 0004 0374 1269, GRID grid.417570.0, F. Hoffmann-La Roche Ltd, ; Basel, Switzerland
                Author information
                http://orcid.org/0000-0003-0184-4670
                Article
                580
                10.1186/s13195-020-0580-2
                6977279
                31969177
                dd908826-041a-4146-9101-b8a41a3f72be
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 August 2019
                : 5 January 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurology
                pharmacokinetics,pk/pd,plasma beta-amyloid,nonlinear mixed-effects modeling,target-mediated drug disposition model

                Comments

                Comment on this article