• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      PurposeThe leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE) mediated green synthesis method of biocompatible gold nanoparticles (AuNPs) possessing improved antioxidant, antimicrobial and plasmonic properties.Materials and methodsDifferent concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs. Their morphology and physical properties have been investigated by means of transmission electron microscopy, ultraviolet–visible absorption spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy, whereas their plasmonic properties have been tested using surface-enhanced Raman spectroscopy (SERS). The antioxidant properties of nanoparticles (NPs) have been evaluated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and the antimicrobial tests were performed using the disk diffusion assay. Their cytotoxicity has been assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.ResultsThe experimental results confirmed the successful synthesis of biocompatible, spherical, plasmonic NPs having a mean diameter of ~40 nm and an outstanding aqueous stability. This new class of NPs exhibits a very good antioxidant activity and presents interesting inhibitory effects against Staphylococcus aureus and Candida albicans. Due to their plasmonic properties, AuNPs are used as SERS substrates for the detection of a test molecule (methylene blue) up to a concentration of 10−7 M and a pharmaceutical compound (propranolol) in solution. Cytotoxicity assays revealed that AuNPs are better tolerated by normal human dermal fibroblast cells, while the melanoma cancer cells are more sensitive.ConclusionThe biocompatible AuNPs synthetized using OVEs showed significant bactericidal and antimycotic activities, the most sensitive microorganisms being S. aureus and C. albicans, both commonly involved in various dermatological infections. Moreover, the significant antioxidant effect might recommend their use for protective and/or preventive effect in various skin inflammatory conditions, including the reduction in side effects in dermatological infections. Meanwhile, the as-synthesized biocompatible AuNPs can be successfully used as SERS substrates for the detection of pharmaceutical compounds in aqueous solutions.

      Related collections

      Most cited references 72

      • Record: found
      • Abstract: found
      • Article: not found

      Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

      A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
        • Record: found
        • Abstract: found
        • Article: not found

        Localized surface plasmon resonance spectroscopy and sensing.

        Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.
          • Record: found
          • Abstract: found
          • Article: not found

          Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

           A. El-Lakany,  S Lee,  P. Jain (2006)
          The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing the nanoshell size or decreasing the ratio of the core/shell radius. Gold nanorods show optical cross-sections comparable to nanospheres and nanoshells, however, at much smaller effective size. Their optical resonance can be linearly tuned across the near-infrared region by changing either the effective size or the aspect ratio of the nanorods. The total extinction as well as the relative scattering contribution increases rapidly with the effective size, however, they are independent of the aspect ratio. To compare the effectiveness of nanoparticles of different sizes for real biomedical applications, size-normalized optical cross-sections or per micron coefficients are calculated. Gold nanorods show per micron absorption and scattering coefficients that are an order of magnitude higher than those for nanoshells and nanospheres. While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorods of high aspect ratio with a larger effective radius.

            Author and article information

            [1 ]Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy
            [2 ]Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine
            [3 ]Faculty of Physics, “Babeş Bolyai” University
            [4 ]State Veterinary Laboratory for Animal Health and Safety
            [5 ]Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
            Author notes
            Correspondence: Rares Stiufiuc, Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4-6, Pasteur Street, 400337 Cluj-Napoca, Romania, Tel +40 7 2634 0278, Fax +40 264 59 7257, Email rares.stiufiuc@
            Constantin Mihai Lucaciu, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8, Victor Babes Street, 400012 Cluj-Napoca, Romania, Tel +40 7 4464 7854, Fax +40 264 59 7257, Email clucaciu@

            These authors contributed equally to this work

            Int J Nanomedicine
            Int J Nanomedicine
            International Journal of Nanomedicine
            International Journal of Nanomedicine
            Dove Medical Press
            20 February 2018
            : 13
            : 1041-1058
            © 2018 Benedec et al. This work is published and licensed by Dove Medical Press Limited

            The full terms of this license are available at and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

            Original Research


            Comment on this article