17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic polymorphisms in AURKA and BRCA1 are associated with breast cancer susceptibility in a Chinese Han population.

      The Journal of Pathology
      Asian Continental Ancestry Group, Aurora Kinase A, Aurora Kinases, Breast Neoplasms, ethnology, genetics, pathology, Carcinoma, Ductal, Breast, Case-Control Studies, China, Female, Genetic Predisposition to Disease, Humans, Polymorphism, Single Nucleotide, Protein-Serine-Threonine Kinases, Ubiquitin-Protein Ligases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Centrosome defects can result in aneuploidy and genomic instability, and have important implications for breast cancer development. The Aurora-A and BRCA1 proteins interact and both are strongly involved in centrosome regulation. Genetic variants in these two genes may have an effect on breast cancer development. Here, we report a comprehensive single nucleotide polymorphism (SNP) and haplotype-tagging association study on these two genes in 1334 breast cancer cases and 1568 unaffected controls among the Chinese Han population. Apart from a missense SNP, rs2273535 (Phe31Ile), and a probable risk SNP, rs2064863, six htSNPs were analysed in three high-LD blocks of AURKA spanning from 10 kb upstream to 2 kb downstream of AURKA. For BRCA1, six htSNPs were analysed in a large high-LD region covering 98 kb (10 kb was extended to each end of BRCA1). The results showed that four SNPs in AURKA (data in recessive model, rs2273535: OR = 2.19, 95% CI = 1.03-4.66, p = 0.0422; rs2298016: OR = 0.38, 95% CI = 0.18-0.82, p = 0.0141; rs6024836: OR = 1.54, 95% CI = 1.18-2.00, p = 0.0014; rs10485805: OR = 0.68, 95% CI = 0.47-0.98, p = 0.0380) and one SNP in BRCA1 (rs3737559, dominant model OR = 1.35, 95% CI = 1.11-1.64, p = 0.0030) were associated with breast cancer susceptibility. After correction for multiple comparisons (FDR = 0.05), only rs6024836 and rs3737559 remained significant. Two haplotypes (CC of block 2, OR = 20.74, 95% CI = 4.35-98.88, p = 0.0001; GG of block 3, OR = 1.32, 95% CI = 1.12-1.56, p = 0.0010) and one diplotype (AG-GG of block 3, OR = 1.63, 95% CI = 1.18-2.26, p = 0.0031) within AURKA showed strong associations with breast cancer risk. One haplotype of BRCA1 (CTGTTG, OR = 1.30, 95% CI = 1.06-1.59, p = 0.0118) was also associated with breast cancer risk. However, women harbouring both at-risk genotypes of Aurora-A and BRCA1 were at a slightly increased risk compared with those harbouring either at-risk variant alone. Common genetic variants in the AURKA and BRCA1 genes may contribute to breast cancer development. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

          Related collections

          Author and article information

          Comments

          Comment on this article