116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating phenotypic and expression profiles to map arsenic-response networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By integrating phenotypic and transcriptional profiling and mapping the data onto metabolic and regulatory networks, it was shown that arsenic probably channels sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on proteins.

          Abstract

          Background

          Arsenic is a nonmutagenic carcinogen affecting millions of people. The cellular impact of this metalloid in Saccharomyces cerevisiae was determined by profiling global gene expression and sensitivity phenotypes. These data were then mapped to a metabolic network composed of all known biochemical reactions in yeast, as well as the yeast network of 20,985 protein-protein/protein-DNA interactions.

          Results

          While the expression data unveiled no significant nodes in the metabolic network, the regulatory network revealed several important nodes as centers of arsenic-induced activity. The highest-scoring proteins included Fhl1, Msn2, Msn4, Yap1, Cad1 (Yap2), Pre1, Hsf1 and Met31. Contrary to the gene-expression analyses, the phenotypic-profiling data mapped to the metabolic network. The two significant metabolic networks unveiled were shikimate, and serine, threonine and glutamate biosynthesis. We also carried out transcriptional profiling of specific deletion strains, confirming that the transcription factors Yap1, Arr1 (Yap8), and Rpn4 strongly mediate the cell's adaptation to arsenic-induced stress but that Cad1 has negligible impact.

          Conclusions

          By integrating phenotypic and transcriptional profiling and mapping the data onto the metabolic and regulatory networks, we have shown that arsenic is likely to channel sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on proteins. Furthermore, we show that phenotypically sensitive pathways are upstream of differentially expressed ones, indicating that transcriptional and phenotypic profiling implicate distinct, but related, pathways.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic expression programs in the response of yeast cells to environmental changes.

          We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulatory networks in Saccharomyces cerevisiae.

            We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequencing and comparison of yeast species to identify genes and regulatory elements.

              Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2004
                29 November 2004
                : 5
                : 12
                : R95
                Affiliations
                [1 ]Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
                [2 ]Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
                [3 ]National Center for Toxicogenomics, Microarray Center, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
                [4 ]Department of Radiation Oncology, Stanford University School of Medicine, 269 Campus Drive West, Stanford, CA 94305, USA
                Article
                gb-2004-5-12-r95
                10.1186/gb-2004-5-12-r95
                545798
                15575969
                ddb4b250-2b4a-4382-ae79-ec4109c09f7a
                Copyright © 2004 Haugen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 August 2004
                : 27 September 2004
                : 2 November 2004
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article