56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multi-locus Analyses Reveal Four Giraffe Species Instead of One

      , , , , , , , ,
      Current Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ASTRAL: genome-scale coalescent-based species tree estimation

          Motivation: Species trees provide insight into basic biology, including the mechanisms of evolution and how it modifies biomolecular function and structure, biodiversity and co-evolution between genes and species. Yet, gene trees often differ from species trees, creating challenges to species tree estimation. One of the most frequent causes for conflicting topologies between gene trees and species trees is incomplete lineage sorting (ILS), which is modelled by the multi-species coalescent. While many methods have been developed to estimate species trees from multiple genes, some which have statistical guarantees under the multi-species coalescent model, existing methods are too computationally intensive for use with genome-scale analyses or have been shown to have poor accuracy under some realistic conditions. Results: We present ASTRAL, a fast method for estimating species trees from multiple genes. ASTRAL is statistically consistent, can run on datasets with thousands of genes and has outstanding accuracy—improving on MP-EST and the population tree from BUCKy, two statistically consistent leading coalescent-based methods. ASTRAL is often more accurate than concatenation using maximum likelihood, except when ILS levels are low or there are too few gene trees. Availability and implementation: ASTRAL is available in open source form at https://github.com/smirarab/ASTRAL/. Datasets studied in this article are available at http://www.cs.utexas.edu/users/phylo/datasets/astral. Contact: warnow@illinois.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of taurine cattle: a window to ruminant biology and evolution.

            To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
              • Record: found
              • Abstract: not found
              • Article: not found

              The BPP program for species tree estimation and species delimitation

                Author and article information

                Journal
                Current Biology
                Current Biology
                Elsevier BV
                09609822
                September 2016
                September 2016
                : 26
                : 18
                : 2543-2549
                Article
                10.1016/j.cub.2016.07.036
                27618261
                ddbaabe4-c4e6-4598-9b66-ce83b604b7fe
                © 2016
                History

                Comments

                Comment on this article

                Related Documents Log