6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toxicological Evaluation of Phytochemical Characterized Aqueous Extract of Wild Dried Lentinus squarrosulus (Mont.) Mushroom in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lentinus squarrosulus (Mont.) is an edible wild mushroom with tough fruiting body that belongs to the family Polyporaceae. It is used in ethnomedicine for the treatment of ulcer, anaemia, cough and fever. Recent studies have demonstrated its anticancer, anti-diabetic and antioxidant properties. However, little or no information is available regarding the bioactive components and toxicological study of wild dried L. squarrosulus. Therefore, this study investigated the bioactive components of aqueous extract of boiled wild dried L. squarrosulus and its toxicological effects in rats. The extract of L. squarrosulus was subjected to GC-MS analysis. The acute toxicity test was performed by oral administration of a single dose of up to 5,000 mg/kg extract of L. squarrosulus. In subacute study, the rats were orally administered extract of L. squarrosulus at the doses of 500, 1,000 and 1,500 mg/kg body weight daily for 14 days. The haematological, lipid profile, liver and kidney function parameters were determined and the histopathology of the liver and kidney were examined. The GC-MS analysis revealed the presence of bioactive compounds; 1-tetradecene, fumaric acid, monochloride, 6-ethyloct-3-yl ester, 9-eicosene, phytol, octahydropyrrolo[1,2-a]pyrazine and 3-trifluoroacetoxypentadecane. In acute toxicity study, neither death nor toxicity sign was recorded. In the sub-acute toxicity study, significant differences ( p < 0.05) were observed on creatinine, aspartate aminotransferase, alanine aminotransferase, total cholesterol, triglycerides and high-density lipoprotein cholesterol. Whilst no significant differences ( p > 0.05) were observed on packed cell volume, heamoglobin, red blood cell, white blood cell and alkaline phosphatase, in all the tested doses. No histopathological alterations were recorded. Our findings revealed that aqueous extract of L. squarrosulus may have antimicrobial, antinocieptive and antioxidant properties based on the result of GC-MS analysis. Results of the toxicity test showed no deleterious effect at the tested doses, suggesting that L. squarrosulus is safe for consumption at the tested doses.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Edible Mushrooms: Improving Human Health and Promoting Quality Life

          Mushrooms have been consumed since earliest history; ancient Greeks believed that mushrooms provided strength for warriors in battle, and the Romans perceived them as the “Food of the Gods.” For centuries, the Chinese culture has treasured mushrooms as a health food, an “elixir of life.” They have been part of the human culture for thousands of years and have considerable interest in the most important civilizations in history because of their sensory characteristics; they have been recognized for their attractive culinary attributes. Nowadays, mushrooms are popular valuable foods because they are low in calories, carbohydrates, fat, and sodium: also, they are cholesterol-free. Besides, mushrooms provide important nutrients, including selenium, potassium, riboflavin, niacin, vitamin D, proteins, and fiber. All together with a long history as food source, mushrooms are important for their healing capacities and properties in traditional medicine. It has reported beneficial effects for health and treatment of some diseases. Many nutraceutical properties are described in mushrooms, such as prevention or treatment of Parkinson, Alzheimer, hypertension, and high risk of stroke. They are also utilized to reduce the likelihood of cancer invasion and metastasis due to antitumoral attributes. Mushrooms act as antibacterial, immune system enhancer and cholesterol lowering agents; additionally, they are important sources of bioactive compounds. As a result of these properties, some mushroom extracts are used to promote human health and are found as dietary supplements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Edible mushrooms: role in the prevention of cardiovascular diseases.

            Edible mushrooms are a valuable source of nutrients and bioactive compounds in addition to a growing appeal for humans by their flavors and culinary features. Recently, they have become increasingly attractive as functional foods for their potential beneficial effects on human health. Hence, food industry is especially interested in cultivated and wild edible mushrooms. Cardiovascular diseases are one of the most prevalent causes of morbidity and mortality in the Western world. Several investigations have shown the influence of mushrooms intake on some metabolic markers (total, LDL, HDL cholesterol, fasting triacylglycerol, homocysteine, blood pressure, homeostatic function and oxidative and inflammatory damage), which potentially may reduce the risk of suffering cardiovascular diseases. Relevant nutritional aspects of mushrooms include a high fiber supply, a low fat content with low trans isomers of unsaturated fatty acids and a low concentration of sodium as well as the occurrence of components such as eritadenine, phenolic compounds, sterols (such as ergosterol), chitosan, triterpenes, etc., which are considered as important responsible agents for some hitherto healthy properties. The aims of this review are to report putative positive effects of mushrooms consumption on cardiovascular diseases risk markers and to identify some putative bioactive compounds involved in these effects. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models

              The objective of the present study was to evaluate the antinociceptive effects of phytol using chemical and thermal models of nociception in mice and to assess its antioxidant effects in vitro. Phytol was administered intraperitoneally (i.p.) to mice at doses of 25, 50, 100, and 200 mg/kg. In the acetic acid-induced writhing test, phytol significantly reduced the number of contortions compared to the control group (P < 0.001). In the formalin test, phytol reduced significantly the amount of time spent in paw licking in both phases (the neurogenic and inflammatory phases), this effect being more pronounced in the second phase (P < 0.001). Phytol also provoked a significant increase in latency in the hot plate test. These antinociceptive effects did not impaire the motor performance, as shown in the rotarod test. Phytol demonstrated a strong antioxidant effect in vitro in its capacity to remove hydroxyl radicals and nitric oxide as well as to prevent the formation of thiobarbituric acid reactive substances (TBARS). Taken as a whole, these results show the pronounced antinociceptive effects of phytol in the nociception models used, both through its central and peripheral actions, but also its antioxidant properties demonstrated in the in vitro methods used.
                Bookmark

                Author and article information

                Journal
                Toxicol Res
                Toxicol Res
                Toxicological Research
                Toxicological Research
                Korean Society of Toxicology
                1976-8257
                2234-2753
                April 2019
                15 April 2019
                : 35
                : 2
                : 181-190
                Affiliations
                [1 ]Department of Biochemistry, Abia State University, Abia State, Nigeria
                [2 ]Department of Medical Biochemistry, College of Medicine Enugu State University of Science and Technology, Enugu, Nigeria
                Author notes
                Correspondence to: Eziuche Amadike Ugbogu, Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria, E-mail: amasryal@ 123456yahoo.com
                Article
                tr-35-181
                10.5487/TR.2019.35.2.181
                6467362
                ddc4b651-edfc-4892-826d-a8fa09a746e2
                Copyright © 2019 The Korean Society Of Toxicology

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 July 2018
                : 26 August 2018
                : 04 October 2018
                Categories
                Original Article

                lentinus squarrosulus,bioactive compound,toxicity,haematology,liver,kidney

                Comments

                Comment on this article