18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Repression of Astrocytic Connexins in Cortical and Subcortical Brain Regions and Prefrontal Enrichment of H3K9me3 in Depression and Suicide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Major depressive disorder has been associated with dysfunctional astrocytic networks. The underlying causes, extent, and consequences of such dysfunctions remain to be characterized. Astrocyte-astrocyte communication occurs principally through gap junction channels primarily formed by connexin 30 and 43 (CX30 and CX43). We previously reported decreased connexin expression in the prefrontal cortex of depressed suicides. In the present study, we investigated whether these changes are mediated by epigenetic regulation, and expanded gene expression quantifications to other cortical and subcortical regions to assess the regional distribution of connexion disruptions in depressed suicides.

          Methods:

          The expression of CX30 and CX43 was measured by real-time PCR in samples of neocortex (Brodmann areas 4 and 17), cerebellar cortex, mediodorsal thalamus, and caudate nucleus of 22 depressed suicides and 22 matched sudden-death controls. Chromatin immunoprecipitation was used to measure enrichment levels of the repressive chromatin mark H3K9me3 in the prefrontal cortex.

          Results:

          We found a consistent downregulation of connexin genes in all regions examined, except in the cerebellum where an increase in the expression of CX30 was measured and using chromatin immunoprecipitation we observed an enrichment of H3K9me3 for both Cx30 and Cx43 in the prefrontal cortex.

          Conclusions:

          Our study shows widespread astrocytic CX gene repression in depressed suicides that is mediated, at least in part, through epigenetic mechanisms. Taken together, these findings support the notion of widespread cerebral astrocytic dysfunction in major depressive disorder.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity of astrocyte functions and phenotypes in neural circuits.

          Astrocytes tile the entire CNS. They are vital for neural circuit function, but have traditionally been viewed as simple, homogenous cells that serve the same essential supportive roles everywhere. Here, we summarize breakthroughs that instead indicate that astrocytes represent a population of complex and functionally diverse cells. Physiological diversity of astrocytes is apparent between different brain circuits and microcircuits, and individual astrocytes display diverse signaling in subcellular compartments. With respect to injury and disease, astrocytes undergo diverse phenotypic changes that may be protective or causative with regard to pathology in a context-dependent manner. These new insights herald the concept that astrocytes represent a diverse population of genetically tractable cells that mediate neural circuit-specific roles in health and disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The gap junction communication channel.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.

              This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II-IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V-VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int. J. Neuropsychopharmacol
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                01 January 2017
                11 August 2016
                11 August 2016
                : 20
                : 1
                : 50-57
                Affiliations
                [1 ] McGill Group for Suicide Studies, Douglas Mental Health University Institute (Ms Nagy, Drs Torres-Platas, Machawar, and Turecki); Departments of Neurology and Neurosurgery (Ms Nagy, Drs Torres-Platas, Machawar, and Turecki), Human Genetics (Dr Turecki), and Psychiatry (Drs Mechawar and Turecki), McGill University , Verdun, Québec, Canada.
                [2 ]N.M. and G.T. shared senior authorship.
                Author notes

                Correspondence: Gustavo Turecki, MD, PhD ( gustavo.turecki@ 123456mcgill.ca ), and Naguib Mechawar, PhD, ( naguib.mechawar@ 123456mcgill.ca ), 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3.

                Article
                pyw071
                10.1093/ijnp/pyw071
                5737582
                27516431
                ddca13c6-879f-4335-be8b-583fa7f645a7
                © The Author 2016. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 8
                Funding
                Funded by: Canadian Institutes of Health Research http://dx.doi.org/10.13039/501100000024
                Award ID: MOP-93775
                Categories
                Regular Research Article

                Pharmacology & Pharmaceutical medicine
                chromatin modification,astrocytes,connexions,depression,suicide

                Comments

                Comment on this article