34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substances. Maternal and fetal blood are thereby separated at any time, by the so-called placental barrier. Current in vitro approaches fail to model this multifaceted structure, therefore research in the field of placental biology is particularly challenging. The present study aimed at establishing a novel model, simulating placental transport and its implications on development, in a versatile but reproducible way. The basal membrane was replicated using a gelatin-based material, closely mimicking the composition and properties of the natural extracellular matrix. The microstructure was produced by using a high-resolution 3D printing method – the two-photon polymerization (2PP). In order to structure gelatin by 2PP, its primary amines and carboxylic acids are modified with methacrylamides and methacrylates (GelMOD-AEMA), respectively. High-resolution structures in the range of a few micrometers were produced within the intersection of a customized microfluidic device, separating the x-shaped chamber into two isolated cell culture compartments. Human umbilical-vein endothelial cells (HUVEC) seeded on one side of this membrane simulate the fetal compartment while human choriocarcinoma cells, isolated from placental tissue (BeWo B30) mimic the maternal syncytium. This barrier model in combination with native flow profiles can be used to mimic the microenvironment of the placenta, investigating different pharmaceutical, clinical and biological scenarios. As proof-of-principle, this bioengineered placental barrier was used for the investigation of transcellular transport processes. While high molecular weight substances did not permeate, smaller molecules in the size of glucose were able to diffuse through the barrier in a time-depended manner. We envision to apply this bioengineered placental barrier for pathophysiological research, where altered nutrient transport is associated with health risks for the fetus.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-laden microengineered gelatin methacrylate hydrogels.

          The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioink properties before, during and after 3D bioprinting.

            Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels

                Bookmark

                Author and article information

                Journal
                Int J Bioprint
                Int J Bioprint
                Whioce Publishing Pte. Ltd.
                International Journal of Bioprinting
                Whioce Publishing Pte. Ltd.
                2424-7723
                2424-8002
                2018
                03 July 2018
                : 4
                : 2
                : 144
                Affiliations
                [1 ]Institute of Materials Science and Technology, TU Wien, Vienna Austria
                [2 ]Austrian Cluster for Tissue Regeneration, Austria
                [3 ]Institute of Applied Synthetic Chemistry, TU Wien, Vienna Austria
                [4 ]Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
                [5 ]Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussels, Belgium
                [6 ]Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
                Author notes
                [* ] Correspondence to: Aleksandr Ovsianikov, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; aleksandr.ovsianikov@ 123456tuwien.ac.at (ORCID: 0000-0001-5846-0198)
                Article
                IJB-4-2-144
                10.18063/IJB.v4i2.144
                7581993
                33102920
                ddd00ed6-cc81-405f-a234-863a55e9ee41
                Copyright: © 2018 Mandt D, et al.

                This is an open-access article distributed under the terms of the Attribution-NonCommercial 4.0 International 4.0 (CC BY-NC 4.0), which permits all non-commercial use, distribution, and reproduction in any medium provided the original work is properly cited.

                History
                : 14 May 2018
                : 18 June 2018
                Categories
                Research Article

                high resolution 3d printing,placental barrier,model,microstructure,two-photon polymerization

                Comments

                Comment on this article