13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Fetal Thymocytes Apoptosis Contributes to Prenatal Nicotine Exposure-induced Th1/Th2 Imbalance in Male Offspring Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nicotine, a definite risk factor during pregnancy, is an immunomodulator. This study was designed to investigate the effects of prenatal nicotine exposure (PNE) on the balance of Th1/Th2 in offspring, and further explore the developmental origin mechanisms from the perspective of fetal thymocytes apoptosis. Pregnant Balb/c mice were administered 1.5 mg/kg nicotine subcutaneously twice per day from gestational day (GD) 9 to GD18. Results showed that PNE could cause a Th2 shift in male offspring, manifested as increased ratio of IgG1/IgG2a, IL-4 production in serum, and IL-4/IFN-γ expression ratio in spleen. Increased apoptosis of total thymocytes and CD4SP and reduced cell proportion of CD4SP were found in PNE male offspring on postnatal day (PND) 14 and PND 49. In the fetuses, decreased body weight and organ index of fetal thymus, histological changes in fetal thymus, reduced CD4SP proportion and increased fetal thymocyte apoptosis were observed in nicotine group. The increased mRNA expression of genes involved in Fas-mediated apoptotic pathway and protein expression of Fas were also detected. In conclusion, PNE could cause a Th2 shift in male offspring mediated by reduced CD4 + T cells output, which may result from the increasing apoptosis of total thymocytes and CD4SP.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines on nicotine dose selection for in vivo research.

          This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Long-Term Consequences of Fetal and Neonatal Nicotine Exposure: A Critical Review

            Cigarette smoking during pregnancy is associated with numerous obstetrical, fetal, and developmental complications, as well as an increased risk of adverse health consequences in the adult offspring. Nicotine replacement therapy (NRT) has been developed as a pharmacotherapy for smoking cessation and is considered to be a safer alternative for women to smoking during pregnancy. The safety of NRT use during pregnancy has been evaluated in a limited number of short-term human trials, but there is currently no information on the long-term effects of developmental nicotine exposure in humans. However, animal studies suggest that nicotine alone may be a key chemical responsible for many of the long-term effects associated with maternal cigarette smoking on the offspring, such as impaired fertility, type 2 diabetes, obesity, hypertension, neurobehavioral defects, and respiratory dysfunction. This review will examine the long-term effects of fetal and neonatal nicotine exposure on postnatal health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fetal nicotine or cocaine exposure: which one is worse?

              T Slotkin (1998)
              Despite extensive adverse publicity, tobacco use continues in approximately 25% of all pregnancies in the United States, overshadowing illicit drugs of abuse, including cocaine. The societal cost of maternal smoking is seen most readily in underweight newborns, in high rates of perinatal morbidity, mortality and Sudden Infant Death Syndrome and in persistent deficits in learning and behavior. We have designed animal models of nicotine exposure to prove that nicotine itself is a neuroteratogen, thus providing a causative link between tobacco exposure and adverse perinatal outcomes. In particular, nicotine infusion paradigms that, like the transdermal patch used in man, produce drug exposure without the confounds of other components of tobacco or of episodic hypoxic-ischemic insult, have enabled a mechanistic dissection of the role played by nicotine in fetal brain damage. Nicotine targets specific neurotransmitter receptors in the fetal brain, eliciting abnormalities of cell proliferation and differentiation, leading to shortfalls in the number of cells and eventually to altered synaptic activity. Because of the close regulatory association of cholinergic and catecholaminergic systems, adverse effects of nicotine involve multiple transmitter pathways and influence not only the immediate developmental events in fetal brain, but also the eventual programming of synaptic competence. Accordingly, defects may appear after a prolonged period of apparent normality, leading to cognitive and learning defects that appear in childhood or adolescence. Comparable alterations occur in peripheral autonomic pathways, leading to increased susceptibility to hypoxia-induced brain damage, perinatal mortality and Sudden Infant Death. Identifying the receptor-driven mechanisms that underlie the neurobehavioral damage caused by fetal nicotine exposure provides a rational basis for decisions about nicotine substitution therapy for smoking cessation in pregnancy. In contrast to the effects of nicotine, animal models of crack cocaine use in pregnancy indicate a more restricted spectrum of effects, a reflection of differences both in pharmacokinetics and pharmacodynamics of the two drugs. Notably, although cocaine, like nicotine, also targets cell replication, its effects are short-lived, permitting recovery to occur in between doses, so that the eventual consequences are much less severe. To some extent, the effects of cocaine on brain development resemble those of nicotine because the two share cardiovascular actions (vasoconstriction) that, under some circumstances, elicit fetal hypoxia-ischemia. In light of the fact that nearly all crack cocaine users smoke cigarettes, the identification of specific developmental effects of cocaine may prove difficult to detect. Although scientists and the public continue to pay far more attention to fetal cocaine effects than to those of nicotine or tobacco use, a change of focus to concentrate on tobacco could have a disproportionately larger impact on human health.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 December 2016
                2016
                : 6
                : 39013
                Affiliations
                [1 ]Department of Pharmacology, Wuhan University School of Basic Medical Sciences , Wuhan 430071, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep39013
                10.1038/srep39013
                5157046
                27976742
                ddd1b090-61cd-49d1-a07b-2552b2b6aa23
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 19 August 2016
                : 16 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article