44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA Structure Modulates the Oligomerization Properties of the AAV Initiator Protein Rep68

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA + motor domain. The AAA + motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA + domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.

          Author Summary

          Adeno-associated virus (AAV) is a parvovirus with a linear single-stranded DNA genome. Thus far, it is the only eukaryotic virus known to integrate its genome in human cells in a specific region of chromosome 19. Because no pathologies have been associated with AAV, there is great interest in using AAV as a vector for gene therapy. The genetic information of AAV encodes for both the structural Capsid proteins and the Rep proteins. We have studied a protein called Rep68, which is essential for both AAV genome replication and site-specific integration in chromosome 19, and found that it forms distinct structures in the presence of different DNA structures. Of particular interest is the formation of a Rep68 structure composed of two opposite rings, which resemble the structures formed by the large T antigen and E1 viral proteins of the tumor-inducing Simian virus 40 (SV40) and papilloma viruses, respectively. The double-ring structure of these viral proteins is essential for viral DNA replication, which suggests that AAV has evolved a similar mechanism of DNA replication that relies on a double-ring Rep68. Moreover, Rep68 encounters different DNA structures during viral genome replication, and our results show how Rep68 can adapt to these changes.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary relationships and structural mechanisms of AAA+ proteins.

          Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of DNA translocation in a replicative hexameric helicase.

            The E1 protein of papillomavirus is a hexameric ring helicase belonging to the AAA + family. The mechanism that couples the ATP cycle to DNA translocation has been unclear. Here we present the crystal structure of the E1 hexamer with single-stranded DNA discretely bound within the hexamer channel and nucleotides at the subunit interfaces. This structure demonstrates that only one strand of DNA passes through the hexamer channel and that the DNA-binding hairpins of each subunit form a spiral 'staircase' that sequentially tracks the oligonucleotide backbone. Consecutively grouped ATP, ADP and apo configurations correlate with the height of the hairpin, suggesting a straightforward DNA translocation mechanism. Each subunit sequentially progresses through ATP, ADP and apo states while the associated DNA-binding hairpin travels from the top staircase position to the bottom, escorting one nucleotide of single-stranded DNA through the channel. These events permute sequentially around the ring from one subunit to the next.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.

              The solution properties, including hydrodynamic quantities and the radius of gyration, of globular proteins are calculated from their detailed, atomic-level structure, using bead-modeling methodologies described in our previous article (, Biophys. J. 76:3044-3057). We review how this goal has been pursued by other authors in the past. Our procedure starts from a list of atomic coordinates, from which we build a primary hydrodynamic model by replacing nonhydrogen atoms with spherical elements of some fixed radius. The resulting particle, consisting of overlapping spheres, is in turn represented by a shell model treated as described in our previous work. We have applied this procedure to a set of 13 proteins. For each protein, the atomic element radius is adjusted, to fit all of the hydrodynamic properties, taking values close to 3 A, with deviations that fall within the error of experimental data. Some differences are found in the atomic element radius found for each protein, which can be explained in terms of protein hydration. A computational shortcut makes the procedure feasible, even in personal computers. All of the model-building and calculations are carried out with a HYDROPRO public-domain computer program.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2009
                July 2009
                10 July 2009
                : 5
                : 7
                : e1000513
                Affiliations
                [1 ]Department of Gene & Cell Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
                [2 ]New York Structural Biology Center, New York, New York, United States of America
                [3 ]Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
                [4 ]Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
                [5 ]Department of Infectious Diseases, King's College London School of Medicine, Guy's, King's College and St. Thomas' Hospitals, London, United Kingdom
                Yale School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: JMS MYR CRE RML. Performed the experiments: JMS MYR CRE. Analyzed the data: JMS MYR WJR CRE RML. Contributed reagents/materials/analysis tools: MYR WJR SA. Wrote the paper: JMS CRE RML.

                Article
                09-PLPA-RA-0101R2
                10.1371/journal.ppat.1000513
                2702170
                19593381
                ddd447b5-582b-439b-8f1f-08206e6896a8
                Mansilla-Soto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 January 2009
                : 16 June 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Biochemistry/Replication and Repair
                Biophysics/Macromolecular Assemblies and Machines
                Biophysics/Replication and Repair

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article