18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The study of speciation in the marine realm is challenging because of the apparent absence of physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to determine whether the period of isolation was long enough for divergence to attain speciation. Among these marine species, the cosmopolitan estuarine-dependent fish Mugil cephalus represents an interesting case study. Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in sympatry in the NW Pacific.

          Results

          Ten nuclear microsatellites were surveyed to estimate the level of genetic isolation of these lineages and determine the role of sea-level fluctuation in the evolution of NW Pacific M. cephalus. Three cryptic species of M. cephalus were identified within this region (NWP1, 2 and 3) using an assignment test on the microsatellite data. Each species corresponds with one of the three mtDNA lineages in the COI phylogenetic tree. NWP3 is the most divergent species, with a distribution range that suggests tropical affinities, while NWP1, with a northward distribution from Taiwan to Russia, is a temperate species. NWP2 is distributed along the warm Kuroshio Current. The divergence of NWP1 from NWP2 dates back to the Pleistocene epoch and probably corresponds to the separation of the Japan and China Seas when sea levels dropped. Despite their subsequent range expansion since this period of glaciation, no gene flow was observed among these three lineages, indicating that speciation has been achieved.

          Conclusions

          This study successfully identified three cryptic species in M. cephalus inhabiting the NW Pacific, using a combination of microsatellites and mitochondrial genetic markers. The current genetic architecture of the M. cephalus species complex in the NW Pacific is the result of a complex interaction of contemporary processes and historical events. Sea level and temperature fluctuations during Plio-Pleistocene epochs probably played a major role in creating the marine species diversity of the NW Pacific that is found today.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution.

          A mismatch distribution is a tabulation of the number of pairwise differences among all DNA sequences in a sample. In a population that has been stationary for a long time these distributions from nonrecombinant DNA sequences become ragged and erratic, whereas a population that has been growing generates mismatch distributions that are smooth and have a peak. The position of the peak reflects the time of the population growth. The signature of an ancient population expansion is apparent even in the low-resolution mtDNA typings described by Merriwether et al. (1991). The smoothness of the mismatch distribution, an indicator of population expansion, is hardly affected by population structure, whereas mean sequence divergence increases in a pooled sample from highly isolated subpopulations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa.

            A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum approximately 21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                31 March 2011
                : 11
                : 83
                Affiliations
                [1 ]Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan, China
                [2 ]Institut de Recherche pour le Développement (IRD), UMR 5119 ECOSYM, Campus IRD/ISRA de Bel Air, BP 1386, CP 18524 Dakar, Sénégal
                Article
                1471-2148-11-83
                10.1186/1471-2148-11-83
                3079632
                21450111
                dddbea01-5b68-41a3-803d-b443a506a765
                Copyright ©2011 Shen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2010
                : 31 March 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article