+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8*3 and CYP2C9

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Nonsteroidal anti-inflammatory drugs (NSAIDs) are metabolized by the cytochrome P450 enzymes (CYPs), predominantly CYP2C8 and CYP2C9. The aim of this study was to evaluate the possible association of polymorphisms in the CYP2C8*3 and CYP2C9 genes with the clinical efficacy of oral piroxicam (20 mg daily for 4 days) after lower third molar surgeries with regard to postoperative pain, swelling, trismus, adverse reactions, need for rescue medication and the volunteer’s overall satisfaction.

          Materials and methods

          For this purpose, 102 volunteers were genotyped for CYP2C8*3 and CYP2C9 polymorphisms. Briefly, genomic DNA was isolated from saliva collected from volunteers subjected to invasive lower third molar surgeries, and the preoperative, intraoperative and postoperative parameters were collected and analyzed.


          An equal amount of piroxicam sufficiently managed postoperative pain and inflammatory symptoms, with visual analog pain scores typically <40 mm for all genotypes investigated. Furthermore, only two out of 102 volunteers heterozygous for CYP2C8*3 and CYP2C9*3 reported adverse side effects.


          In general, slow metabolizers of piroxicam, who were volunteers with mutant alleles, were indifferent from normal metabolizers with the wild-type alleles and therefore did not require specialized piroxicam doses to manage postoperative pain and inflammation.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of CYP450 Testing in the Clinical Setting

          Interindividual variability in drug response is a major clinical problem. Polymedication and genetic polymorphisms modulating drug-metabolising enzyme activities (cytochromes P450, CYP) are identified sources of variability in drug responses. We present here the relevant data on the clinical impact of the major CYP polymorphisms (CYP2D6, CYP2C19 and CYP2C9) on drug therapy where genotyping and phenotyping may be considered, and the guidelines developed when available. CYP2D6 is responsible for the oxidative metabolism of up to 25 % of commonly prescribed drugs such as antidepressants, antipsychotics, opioids, antiarrythmics and tamoxifen. The ultrarapid metaboliser (UM) phenotype is recognised as a cause of therapeutic inefficacy of antidepressant, whereas an increased risk of toxicity has been reported in poor metabolisers (PMs) with several psychotropics (desipramine, venlafaxine, amitriptyline, haloperidol). CYP2D6 polymorphism influences the analgesic response to prodrug opioids (codeine, tramadol and oxycodone). In PMs for CYP2D6, reduced analgesic effects have been observed, whereas in UMs cases of life-threatening toxicity have been reported with tramadol and codeine. CYP2D6 PM phenotype has been associated with an increased risk of toxicity of metoprolol, timolol, carvedilol and propafenone. Although conflicting results have been reported regarding the association between CYP2D6 genotype and tamoxifen effects, CYP2D6 genotyping may be useful in selecting adjuvant hormonal therapy in postmenopausal women. CYP2C19 is responsible for metabolising clopidogrel, proton pump inhibitors (PPIs) and some antidepressants. Carriers of CYP2C19 variant alleles exhibit a reduced capacity to produce the active metabolite of clopidogrel, and are at increased risk of adverse cardiovascular events. For PPIs, it has been shown that the mean intragastric pH values and the Helicobacter pylori eradication rates were higher in carriers of CYP2C19 variant alleles. CYP2C19 is involved in the metabolism of several antidepressants. As a result of an increased risk of adverse effects in CYP2C19 PMs, dose reductions are recommended for some agents (imipramine, sertraline). CYP2C9 is responsible for metabolising vitamin K antagonists (VKAs), non-steroidal anti-inflammatory drugs (NSAIDs), sulfonylureas, angiotensin II receptor antagonists and phenytoin. For VKAs, CYP2C9 polymorphism has been associated with lower doses, longer time to reach treatment stability and higher frequencies of supratherapeutic international normalised ratios (INRs). Prescribing algorithms are available in order to adapt dosing to genotype. Although the existing data are controversial, some studies have suggested an increased risk of NSAID-associated gastrointestinal bleeding in carriers of CYP2C9 variant alleles. A relationship between CYP2C9 polymorphisms and the pharmacokinetics of sulfonylureas and angiotensin II receptor antagonists has also been observed. The clinical impact in terms of hypoglycaemia and blood pressure was, however, modest. Finally, homozygous and heterozygous carriers of CYP2C9 variant alleles require lower doses of phenytoin to reach therapeutic plasma concentrations, and are at increased risk of toxicity. New diagnostic techniques made safer and easier should allow quicker diagnosis of metabolic variations. Genotyping and phenotyping may therefore be considered where dosing guidelines according to CYP genotype have been published, and help identify the right molecule for the right patient.
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacogenetics - five decades of therapeutic lessons from genetic diversity.

            Physicians have long been aware of the subtle differences in the responses of patients to medication. The recognition that a part of this variation is inherited, and therefore predictable, created the field of pharmacogenetics fifty years ago. Knowing the gene variants that cause differences among patients has the potential to allow 'personalized' drug therapy and to avoid therapeutic failure and serious side effects.
              • Record: found
              • Abstract: found
              • Article: not found

              CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis.

              Two common variant alleles of the cytochrome CYP2C9 (CYP2C9*2 and CYP2C9*3) lead to reduced warfarin metabolism in vitro and in vivo. The study objective was to examine the strength and quality of existing evidence about CYP2C9 gene variants and clinical outcomes in warfarin-treated patients. The study was a systematic review and meta-analysis. Multiple electronic databases were searched, references identified from bibliographies were sought, and experts and authors of primary studies were also contacted. Strict review inclusion criteria were determined. Three reviewers independently extracted data using prepiloted proformas. In all, 11 studies meeting review inclusion criteria were identified (3029 patients). Nine were included in the meta-analyses (2775 patients). Random effects meta-analyses were performed; statistical heterogeneity and inconsistency was assessed. Twenty percent of patients studied carry a variant allele: CYP2C9*2 12.2% (9.7%-15.0%) and CYP2C9*3, 7.9% (6.5%-9.7%). Mean difference in daily warfarin dose: for CYP2C9*2, the reduction was 0.85 mg (0.60-1.11 mg), a 17% reduction. For CYP2C9*3, the reduction was 1.92 mg (1.37-2.47 mg), a 37% reduction. For CYP2C9*2 or *3, the reduction was 1.47 mg (1.24-1.71 mg), a 27% reduction. The relative bleeding risk for CYP2C9*2 was 1.91 (1.16-3.17) and for CYP2C9*3 1.77 (1.07-2.91). For either variant, the relative risk was 2.26 (1.36-3.75). Patients with CYP2C9*2 and CYP2C9*3 alleles have lower mean daily warfarin doses and a greater risk of bleeding. Testing for gene variants could potentially alter clinical management in patients commencing warfarin. Evidence for the clinical utility and cost-effectiveness of genotyping is needed before routine testing can be recommended.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                06 July 2017
                : 10
                : 1581-1589
                Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
                Author notes
                Correspondence: Carlos Ferreira Santos, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil, Tel +55 14 3235 8295, Email cfsantos@ 123456fob.usp.br
                © 2017 Calvo et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article