26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of hypoxia on human cancer cell line chemosensitivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia.

          Methods

          A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA).

          Results

          Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs.

          Conclusions

          A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.

          New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The unique physiology of solid tumors: opportunities (and problems) for cancer therapy.

            The physiology of solid tumors differs from that of normal tissues in a number of important aspects, the majority of which stem from differences between the two vasculatures. Compared with the regular, ordered vasculature of normal tissues, blood vessels in tumors are often highly abnormal, distended capillaries with leaky walls and sluggish flow. Tumor growth also requires continuous new vessel growth, or angiogenesis. These physiological differences can be problems for cancer treatment; for example, hypoxia in solid tumors leads to resistance to radiotherapy and to some anticancer drugs. However, these differences can also be exploited for selective cancer treatment. Here we review four such areas that are under active investigation: (a) hypoxia-selective cytotoxins take advantage of the unique low oxygen tension in the majority of human solid tumors. Tirapazamine, a drug in the final stages of clinical trials, is one of the more promising of these agents; (b) leaky tumor blood vessels can be exploited using liposomes that have been sterically stabilized to have a long intravascular half-life, allowing them to selectively accumulate in solid tumors; (c) the tumor microenvironment is a stimulus to angiogenenesis, and inhibition of angiogenesis can be a powerful anticancer therapy not susceptible to acquired drug resistance; and (d) we discuss attempts to use gene therapy activated either by the low oxygen environment or by necrotic regions of tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix.

              Experimental tumors contain a significant fraction of microregions that are chronically or transiently hypoxic. Experimental evidence showing that hypoxia (and subsequent reoxygenation) may have a profound impact on malignant progression and on responsiveness to therapy is growing. The clinical relevance of tumor oxygenation in human solid malignancies is under investigation. We have developed and validated a clinically applicable method for measurement of tumor oxygenation in locally advanced cancer of the uterine cervix using a computerized polarographic electrode system. Applying this procedure in patients with cervical cancers
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2013
                5 July 2013
                : 13
                : 331
                Affiliations
                [1 ]Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
                Article
                1471-2407-13-331
                10.1186/1471-2407-13-331
                3707755
                23829203
                dde69db8-619e-4da8-8f7b-8d477aead212
                Copyright © 2013 Strese et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 March 2013
                : 28 June 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                chemotherapy,hypoxia,anoxia,cancer cell lines,fmca,hypoxic incubator,drug resistance

                Comments

                Comment on this article