8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Poultry Litter Contamination by Escherichia coli Resistant to Critically Important Antimicrobials for Human and Animal Use and Risk for Public Health in Cameroon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Residues of antimicrobials used in farm can exert selective pressure and accelerate the occurrence of multidrug resistant bacteria in litter. This study aimed to investigate the resistance profile of Escherichia coli isolated from poultry litter. A total of 101 E. coli strains was isolated from 229 litter samples collected and stored for two months in the laboratory at room temperature. Antimicrobial susceptibility testing was performed using the disk diffusion method. An overall resistance prevalence of 58.4% (95% CI: 48.8–68.0) was obtained with 59 E. coli strains resistant to various antimicrobial agents. High levels of resistance were observed with ciprofloxacin (21/59: 36%), imipenem (27/59: 45%), norfloxacin (44/59: 74%), ceftriaxone (44/59: 74%), and levofloxacin (44/59: 75%). These antimicrobials classified under the Watch group by WHO are indicators of the high AMR risk to public health in Cameroon. Multivariable logistic regression analysis revealed that a greater probability of high level of E. coli multidrug resistance was associated with lack of training in poultry farming (OR = 0.13, p = 0.01), less experience in poultry farming (OR = 11.66 p = 0.04), and the high frequency of digestive tract disease (OR = 0.10; p = 0.001). This study revealed that poultry litter constitutes a potential source of dissemination of resistant germs from farm animals to the environment and humans.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Global trends in antimicrobial use in food animals.

          Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg(-1), 148 mg⋅kg(-1), and 172 mg⋅kg(-1) for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global trends in antimicrobial resistance in animals in low- and middle-income countries

            The global scale-up in demand for animal protein is the most notable dietary trend of our time. Antimicrobial consumption in animals is threefold that of humans and has enabled large-scale animal protein production. The consequences for the development of antimicrobial resistance in animals have received comparatively less attention than in humans. We analyzed 901 point prevalence surveys of pathogens in developing countries to map resistance in animals. China and India represented the largest hotspots of resistance, with new hotspots emerging in Brazil and Kenya. From 2000 to 2018, the proportion of antimicrobials showing resistance above 50% increased from 0.15 to 0.41 in chickens and from 0.13 to 0.34 in pigs. Escalating resistance in animals is anticipated to have important consequences for animal health and, eventually, for human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis

              Summary Background Antibiotic use in human medicine, veterinary medicine, and agriculture has been linked to the rise of antibiotic resistance globally. We did a systematic review and meta-analysis to summarise the effect that interventions to reduce antibiotic use in food-producing animals have on the presence of antibiotic-resistant bacteria in animals and in humans. Methods On July 14, 2016, we searched electronic databases (Agricola, AGRIS, BIOSIS Previews, CAB Abstracts, MEDLINE, Embase, Global Index Medicus, ProQuest Dissertations, Science Citation Index) and the grey literature. The search was updated on Jan 27, 2017. Inclusion criteria were original studies that reported on interventions to reduce antibiotic use in food-producing animals and compared presence of antibiotic-resistant bacteria between intervention and comparator groups in animals or in human beings. We extracted data from included studies and did meta-analyses using random effects models. The main outcome assessed was the risk difference in the proportion of antibiotic-resistant bacteria. Findings A total of 181 studies met inclusion criteria. Of these, 179 (99%) described antibiotic resistance outcomes in animals, and 81 (45%) of these studies were included in the meta-analysis. 21 studies described antibiotic resistance outcomes in humans, and 13 (62%) of these studies were included in the meta-analysis. The pooled absolute risk reduction of the prevalence of antibiotic resistance in animals with interventions that restricted antibiotic use commonly ranged between 10 and 15% (total range 0–39), depending on the antibiotic class, sample type, and bacteria under assessment. Similarly, in the human studies, the pooled prevalence of antibiotic resistance reported was 24% lower in the intervention groups compared with control groups, with a stronger association seen for humans with direct contact with food-producing animals. Interpretation Interventions that restrict antibiotic use in food-producing animals are associated with a reduction in the presence of antibiotic-resistant bacteria in these animals. A smaller body of evidence suggests a similar association in the studied human populations, particularly those with direct exposure to food-producing animals. The implications for the general human population are less clear, given the low number of studies. The overall findings have directly informed the development of WHO guidelines on the use of antibiotics in food-producing animals. Funding World Health Organization.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                08 April 2021
                April 2021
                : 10
                : 4
                : 402
                Affiliations
                [1 ]Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundere 454, Cameroon; mouichemoctar4@ 123456gmail.com (M.M.M.M.); kapnangherve@ 123456gmail.com (H.K.D.); patchtombe@ 123456gmail.com (P.T.); kochivifab@ 123456gmail.com (F.L.K.); dongmojarvis@ 123456gmail.com (J.B.D.); cleophaskaht@ 123456gmail.com (C.K.M.); peminabilah@ 123456yahoo.fr (N.P.M.)
                [2 ]Laboratory of Animal Physiology and Health, Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang 479, Cameroon; awahndukum@ 123456yahoo.co.uk
                [3 ]National Veterinary Laboratory (LANAVET), Garoua 503, Cameroon; abelwade@ 123456gmail.com
                [4 ]Laboratoire de Recherche et d’Expertise Biomédicale (LABOREB), Yaoundé 35262, Cameroon; mngogang@ 123456gmail.com
                [5 ]Department of Animal Production Technology, College of Technology, University of Bamenda, Bambili 39, Cameroon
                Author notes
                [* ]Correspondence: freddymoffo@ 123456gmail.com ; Tel.: +237-695-664-147
                Author information
                https://orcid.org/0000-0002-4915-2035
                https://orcid.org/0000-0002-4900-3670
                https://orcid.org/0000-0003-3179-2269
                https://orcid.org/0000-0001-9996-8035
                Article
                antibiotics-10-00402
                10.3390/antibiotics10040402
                8067999
                33917678
                ddefee40-e596-4258-b9dc-f0bc90271adc
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 06 March 2021
                : 02 April 2021
                Categories
                Article

                escherichia coli,poultry litter,antimicrobial resistance,prevalence,risk factors,public health,cameroon

                Comments

                Comment on this article