5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged.

      Circulation
      Action Potentials, Animals, Calcium, metabolism, Cell Separation, Diastole, Disease Models, Animal, Electric Stimulation, Heart Failure, pathology, physiopathology, In Vitro Techniques, Intracellular Fluid, Membrane Potentials, Myocardial Contraction, Myocardium, Nickel, pharmacology, Patch-Clamp Techniques, Rabbits, Sodium, Sodium Channel Blockers, Sodium Channels, Sodium-Calcium Exchanger, antagonists & inhibitors, Sodium-Potassium-Exchanging ATPase, drug effects, Strophanthidin, Tetrodotoxin

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracellular sodium concentration ([Na(+)](i)) modulates cardiac contractile and electrical activity through Na/Ca exchange (NCX). Upregulation of NCX in heart failure (HF) may magnify the functional impact of altered [Na(+)](i). We measured [Na(+)](i) by using sodium binding benzofuran isophthalate in control and HF rabbit ventricular myocytes (HF induced by aortic insufficiency and constriction). Resting [Na(+)](i) was 9.7+/-0.7 versus 6.6+/-0.5 mmol/L in HF versus control. In both cases, [Na(+)](i) increased by approximately 2 mmol/L when myocytes were stimulated (0.5 to 3 Hz). To identify the mechanisms responsible for [Na(+)](i) elevation in HF, we measured the [Na(+)](i) dependence of Na/K pump-mediated Na(+) extrusion. There was no difference in V(max) (8.3+/-0.7 versus 8.0+/-0.8 mmol/L/min) or K(m) (9.2+/-1.0 versus 9.9+/-0.8 mmol/L in HF and control, respectively). Therefore, at measured [Na(+)](i) levels, the Na/K pump rate is actually higher in HF. However, resting Na(+) influx was twice as high in HF versus control (2.3+/-0.3 versus 1.1+/-0.2 mmol/L/min), primarily the result of a tetrodotoxin-sensitive pathway. Myocyte [Na(+)](i) is elevated in HF as a result of higher diastolic Na(+) influx (with unaltered Na/K-ATPase characteristics). In HF, the combined increased [Na(+)](i), decreased Ca(2+) transient, and prolonged action potential all profoundly affect cellular Ca(2+) regulation, promoting greater Ca(2+) influx through NCX during action potentials. Notably, the elevated [Na(+)](i) may be critical in limiting the contractile dysfunction observed in HF.

          Related collections

          Author and article information

          Comments

          Comment on this article