49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integer Forcing-and-Forward Transceiver Design for MIMO Multi-Pair Two-Way Relaying

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose a new transmission scheme, named as Integer Forcing-and-Forward (IFF), for communications among multi-pair multiple-antenna users in which each pair exchanges their messages with the help of a single multi antennas relay in the multiple-access and broadcast phases. The proposed scheme utilizes Integer Forcing Linear Receiver (IFLR) at relay, which uses equations, i.e., linear integer-combinations of messages, to harness the intra-pair interference. Accordingly, we propose the design of mean squared error (MSE) based transceiver, including precoder and projection matrices for the relay and users, assuming that the perfect channel state information (CSI) is available. In this regards, in the multiple-access phase, we introduce two new MSE criteria for the related precoding and filter designs, i.e., the sum of the equations MSE (Sum-Equation MSE) and the maximum of the equations MSE (Max-Equation MSE), to exploit the equations in the relay. In addition, the convergence of the proposed criteria is proven as well. Moreover, in the broadcast phase, we use the two traditional MSE criteria, i.e. the sum of the users' mean squred errors (Sum MSE) and the maximum of the users' mean squared errors (Max MSE), to design the related precoding and filters for recovering relay's equations by the users. Then, we consider a more practical scenario with imperfect CSI. For this case, IFLR receiver is modified, and another transceiver design is proposed, which take into account the effect of channels estimation error. We evaluate the performance of our proposed strategy and compare the results with the conventional amplify-and-forward (AF) and denoise-and-forward (DF) strategies for the same scenario. The results indicate the substantial superiority of the proposed strategy in terms of the outage probability and the sum rate.

          Related collections

          Author and article information

          Journal
          2014-10-31
          2015-02-09
          Article
          1410.8797
          99625e7a-7562-4b91-b2cf-ddda7d1867b2

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          30 pages, 7 figures, Submitted to a IEEE journal
          cs.IT math.IT

          Numerical methods,Information systems & theory
          Numerical methods, Information systems & theory

          Comments

          Comment on this article