5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is a dearth of drugs to manage a dose-limiting painful peripheral neuropathy induced by paclitaxel in some patients during the treatment of cancer. Gamma-aminobutyric acid transporter-1 (GAT-1) whose expression is increased in the brain and spinal cord during paclitaxel-induced neuropathic pain (PINP) might be a potential therapeutic target for managing PINP. Thus, our aim was to evaluate if systemic administration of a GAT-1 inhibitor ameliorates PINP.

          Methods

          The reaction latency to thermal stimuli (hot plate test; at 55 °C) and cold stimuli (cold plate test; at 4 °C) of female BALB/c mice was recorded before and after intraperitoneal treatment with paclitaxel, its vehicle, and/or a selective GAT-1 inhibitor NO-711. The effects of NO-711 on motor coordination were evaluated using the rotarod test at a constant speed of 4 rpm or accelerating mode from 4 rpm to 40 rpm over 5 min.

          Results

          The coadministration of paclitaxel with NO-711 3 mg/kg prevented the development of paclitaxel-induced thermal hyperalgesia and cold allodynia at day 7 after drug treatment. NO-711 at 3 mg/kg produced antihyperalgesic activity up to 1 h and antiallodynic activity up to 2 h in mice with established paclitaxel-induced thermal hyperalgesia and cold allodynia. No motor deficits were observed with NO-711 at a dose of 3 mg/kg, whereas a higher dose 5 mg/kg caused motor impairment and reduced mean time spent on the rotarod at a constant speed of 4 rpm. However, at a rotarod accelerating mode from 4 rpm to 40 rpm over 5 min, NO-711 3 mg/kg caused motor impairment up to 1 h, but had recovered by 2 h.

          Conclusions

          These results show that systemic administration of the GAT-1 inhibitor NO-711 has preventative and therapeutic activity against paclitaxel-induced thermal hyperalgesia and cold allodynia. NO-711’s antiallodynic effects, but not antihyperalgesic effects, were independent of its motor impairment/sedation properties. Thus, low doses of GAT-1 inhibitors could be useful for the prevention and treatment of PINP with proper dose titration to reduce motor impairment/sedation side effects.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline.

          To provide evidence-based guidance on the optimum prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathies (CIPN) in adult cancer survivors. A systematic literature search identified relevant, randomized controlled trials (RCTs) for the treatment of CIPN. Primary outcomes included incidence and severity of neuropathy as measured by neurophysiologic changes, patient-reported outcomes, and quality of life. A total of 48 RCTs met eligibility criteria and comprise the evidentiary basis for the recommendations. Trials tended to be small and heterogeneous, many with insufficient sample sizes to detect clinically important differences in outcomes. Primary outcomes varied across the trials, and in most cases, studies were not directly comparable because of different outcomes, measurements, and instruments used at different time points. The strength of the recommendations is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. On the basis of the paucity of high-quality, consistent evidence, there are no agents recommended for the prevention of CIPN. With regard to the treatment of existing CIPN, the best available data support a moderate recommendation for treatment with duloxetine. Although the CIPN trials are inconclusive regarding tricyclic antidepressants (such as nortriptyline), gabapentin, and a compounded topical gel containing baclofen, amitriptyline HCL, and ketamine, these agents may be offered on the basis of data supporting their utility in other neuropathic pain conditions given the limited other CIPN treatment options. Further research on these agents is warranted. © 2014 by American Society of Clinical Oncology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain.

            In human conditions, chronic pain is associated with widespread anatomical changes in the brain. Nevertheless, little is known about the time course of these changes or the relationship of anatomical changes to perception and behaviour. In the present study, we use a rat model of neuropathic pain (spared nerve injury, SNI) and 7 T MRI to determine the longitudinal supraspinal changes associated with pain-like and anxiety-like behaviours. SNI rats and sham controls were scanned at seven time points, 1 week before surgery, 2 weeks after, and then once a month for 5 months. At each time point we performed behavioural tests, including thermal and mechanical sensitivity, and tests of locomotion and exploratory behaviour (open field and elevated plus maze). We found that SNI rats had early and sustained thermal and mechanical hyperalgesia, and developed anxiety-like behaviours several months after injury. Compared to sham controls, SNI rats had decreased frontal cortex volumes several months after surgery, coincident with the onset of anxiety-like behaviours. There was also decreased volume in retrosplenial and entorhinal cortices. We also explored areas that correlated with mechanical hyperalgesia and found that increased hyperalgesia was associated with decreased volumes in bilateral S1 hindlimb area, anterior cingulate cortex (ACC, areas 32 and 24), and insula. Overall, our results suggest that long-term neuropathic pain has widespread effects on brain anatomy related to the duration and magnitude of the pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury.

              Abstract In this study we explore if loss of GABAergic inhibitory interneurons in the superficial dorsal horn of the spinal cord contributes to reduced GABAergic tone and neuropathic pain following spinal cord injury (SCI). A moderate contusion injury to T11 resulted in the development of mechanical hyperalgesia and thermal hyperalgesia below the level of the lesion in gad1:GFP mice that were alleviated by IP administration of the GABA transporter antagonist tiagabine. Six weeks following SCI a decreased number of GFP(+) neurons were observed in the dorsal horn of SCI animals relative to sham mice. Tissue from a mouse 2 weeks post-SCI was subsequently observed to express activated caspase-3, indicative of apoptosis, co-localized to some GFP(+) GABAergic neurons. Glutamate decarboxylase (GAD)65 and GAD67 immunohistochemical staining was reduced in the dorsal horn of SCI animals. This observation was confirmed in Western blots showing reduced immunoreactivity for GAD67, as well as GABA transporter (GAT)1. Reversal of post-SCI neuropathic pain by tiagabine suggests that reduced GABAergic tone may contribute to hyperalgesia symptoms. This is supported by the subsequent observation that SCI reduced the number of GFP(+) inhibitory neurons, and the finding that some GABAergic GFP(+) neurons undergo cell death at a time point consistent with the development of neuropathic pain following SCI. Concordantly, reductions in both GAD65 and GAD67 and GAT1 immunoreactivity also support the observation of a loss of GABAergic inhibition and the associated spinal interneurons.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                15 December 2016
                2016
                : 4
                : e2798
                Affiliations
                [-1]Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University , Safat, Kuwait
                Article
                2798
                10.7717/peerj.2798
                5162398
                27994987
                de0c0bc8-3db0-42a7-9f41-9e082f6b2e1c
                ©2016 Masocha and Parvathy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 20 May 2016
                : 17 November 2016
                Funding
                Funded by: Kuwait University Research Sector
                Award ID: PT01/15
                This study was supported by grant PT01/15 from Kuwait University Research Sector. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Animal Behavior
                Neuroscience
                Anaesthesiology and Pain Management
                Pharmacology

                chemotherapy-induced neuropathic pain,paclitaxel,gaba transporter (gat),gat-1 inhibitor,preventative treatment,therapeutic treatment,hyperalgesia,motor coordination,allodynia

                Comments

                Comment on this article