52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhabdastrellic Acid-A Induced Autophagy-Associated Cell Death through Blocking Akt Pathway in Human Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Autophagy is an evolutionarily conserved protein degradation pathway. A defect in autophagy may contribute to tumorigenesis. Autophagy inducers could have a potential function in tumor prevention and treatment.

          Methodology/Principal Findings

          Our results showed that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge Rhabdastrella globostellata, inhibited proliferation of human cancer cell lines Hep3B and A549 and induced caspase-independent cell death in both the cell lines. Further investigation showed that Rhabdastrellic acid-A induced autophagy of cancer cells determined by YFP-LC3 punctation and increased LC3-II. The pretreatment with autophagy inhibitor 3-MA inhibited Rhabdastrellic acid-A-induced cell death. Knockdown of autophagy-related gene Atg5 inhibited Rhabdastrellic acid-A-induced cell death in A549 cells. Also, phospho-Akt and its downstream targets significantly decreased after treatment with Rhabdastrellic acid-A in both cancer cell lines. Transfection of constitutive active Akt plasmid abrogated autophagy and cell death induced by Rhabdastrellic acid-A.

          Conclusions/Significance

          These results suggest that Rhabdastrellic acid-A could induce autophagy-associated cell death through blocking Akt pathway in cancer cells. It also provides the evidence that Rhabdastrellic acid-A deserves further investigation as a potential anticancer or cancer preventive agent.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Cellular survival: a play in three Akts.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy in cell death: an innocent convict?

            The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death. This concept has now been evaluated using cells and organisms deficient in autophagy genes. Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism. This review summarizes the evidence linking autophagy to cell survival and cell death, the complex interplay between autophagy and apoptosis pathways, and the role of autophagy-dependent survival and death pathways in clinical diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy.

              The PI3K/Akt signal transduction cascade has been investigated extensively for its roles in oncogenic transformation. Initial studies implicated both PI3K and Akt in prevention of apoptosis. However, more recent evidence has also associated this pathway with regulation of cell cycle progression. Uncovering the signaling network spanning from extracellular environment to the nucleus should illuminate biochemical events contributing to malignant transformation. Here, we discuss PI3K/Akt-mediated signal transduction including its mechanisms of activation, signal transducing molecules, and effects on gene expression that contribute to tumorigenesis. Effects of PI3K/Akt signaling on important proteins controlling cellular proliferation are emphasized. These targets include cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors. Furthermore, strategies used to inhibit the PI3K/Akt pathway are presented. The potential for cancer treatment with agents inhibiting this pathway is also addressed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                17 August 2010
                : 5
                : 8
                : e12176
                Affiliations
                [1 ]State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
                [2 ]The Affiliated He Xian Memorial Hospital of Southern Medical University, Guangzhou, China
                [3 ]Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China
                INMI, Italy
                Author notes

                Conceived and designed the experiments: XSZ XFZ. Performed the experiments: DDL JFG JJH LLW RD. Analyzed the data: DDL JNL GKF. Contributed reagents/materials/analysis tools: DJX SZD. Wrote the paper: DDL.

                Article
                10-PONE-RA-16459R2
                10.1371/journal.pone.0012176
                2923153
                20808909
                de2689e8-46b8-4b61-880b-776c16f1e556
                Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 February 2010
                : 21 July 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Oncology
                Cell Biology/Cell Signaling
                Oncology/Oncology Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article