27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Colistin for lung infection: an update

      review-article
      Journal of Intensive Care
      BioMed Central
      Colistin, Lung infection, Pneumonia, Ventilator-associated pneumonia, Critically ill

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing incidence of resistance of gram-negative bacteria against even newer antibiotic including carbapenem has generated interest in the old antibiotic colistin, which are being used as salvage therapy in the treatment of multidrug resistant infection. Colistin has excellent bactericidal activity against most gram-negative bacilli. It has shown persist level in the liver, kidney, heart, and muscle; while it is poorly distributed to the bones, cerebrospinal fluid, lung parenchyma, and pleural cavity. Being an old drug, colistin was never gone through the drug development process needed for compliance with competent regulatory authorities that resulted in very much limited understanding of pharmacokinetic (PK) and pharmacodynamic (PD) parameters, such as C max/MIC ratio, AUC/MIC and T > MIC that could predict the efficacy of colistin. In available PK/PD studies of colistin, mean maximum serum concentration ( C max) of colistin were found just above the MIC breakpoint at steady states that would most probably lead to suboptimal for killing the bacteria, even at dosages of 3.0 million international units (MIU) i.e., 240 mg of colistimethate sodium (CMS) intravenously every 8 h. These finding stresses to use high loading as well as high maintenance dose of intravenous colistin. It is not only suboptimal plasma concentration of colistin but also poor lung tissue concentration, which has been demonstrated in recent studies, poses major concern in using intravenous colistin. Combination therapy mainly with carbapenems shows synergistic effect. In recent studies, inhaled colistin has been found promising in treatment of lung infection due to MDR gram-negative bacteria. New evidence shows less toxicity than previously reported.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

          Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Toxicity of polymyxins: a systematic review of the evidence from old and recent studies

            Background The increasing problem of multidrug-resistant Gram-negative bacteria causing severe infections and the shortage of new antibiotics to combat them has led to the re-evaluation of polymyxins. These antibiotics were discovered from different species of Bacillus polymyxa in 1947; only two of them, polymyxin B and E (colistin), have been used in clinical practice. Their effectiveness in the treatment of infections due to susceptible Gram-negative bacteria, including Pseudomonas aeruginosa and Acinetobacter baumannii, has not been generally questioned. However, their use was abandoned, except in patients with cystic fibrosis, because of concerns related to toxicity. Methods We reviewed old and recent evidence regarding polymyxin-induced toxicity by searching Pubmed (from 1950 until May 2005). Results It was reported in the old literature that the use of polymyxins was associated with considerable toxicity, mainly nephrotoxicity and neurotoxicity, including neuromuscular blockade. However, recent studies showed that the incidence of nephrotoxicity is less common and severe compared to the old studies. In addition, neurotoxic effects of polymyxins are usually mild and resolve after prompt discontinuation of the antibiotics. Furthermore, cases of neuromuscular blockade and apnea have not been reported in the recent literature. Conclusion New evidence shows that polymyxins have less toxicity than previously reported. The avoidance of concurrent administration of nephrotoxic and/or neurotoxic drugs, careful dosing, as well as more meticulous management of fluid and electrolyte abnormalities and use of critical care services may be some of the reasons for the discrepancy between data reported in the old and recent literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides.

              The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.
                Bookmark

                Author and article information

                Contributors
                m.gurjar@rediffmail.com
                Journal
                J Intensive Care
                J Intensive Care
                Journal of Intensive Care
                BioMed Central (London )
                2052-0492
                22 January 2015
                22 January 2015
                2015
                : 3
                : 1
                : 3
                Affiliations
                Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP India
                Article
                72
                10.1186/s40560-015-0072-9
                4336271
                25705428
                de30db32-2721-4b53-b720-7c708957570d
                © Gurjar; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 October 2014
                : 9 January 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                colistin,lung infection,pneumonia,ventilator-associated pneumonia,critically ill

                Comments

                Comment on this article

                scite_

                Similar content281

                Cited by39

                Most referenced authors733