Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Swimming and escape behavior in two species of calanoid copepods from nauplius to adult

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          The scaling of locomotor performance in predator-prey encounters: from fish to killer whales.

           P Domenici (2001)
          During predator-prey encounters, a high locomotor performance in unsteady manoeuvres (i.e. acceleration, turning) is desirable for both predators and prey. While speed increases with size in fish and other aquatic vertebrates in continuous swimming, the speed achieved within a given time, a relevant parameter in predator-prey encounters, is size independent. In addition, most parameters indicating high performance in unsteady swimming decrease with size. Both theoretical considerations and data on acceleration suggest a decrease with body size. Small turning radii and high turning rates are indices of maneuverability in space and in time, respectively. Maneuverability decreases with body length, as minimum turning radii and maximum turning rates increase and decrease with body length, respectively. In addition, the scaling of linear performance in fish locomotion may be modulated by turning behaviour, which is an essential component of the escape response. In angelfish, for example, the speed of large fish is inversely related to their turning angle, i.e. fish escaping at large turning angles show lower speed than fish escaping at small turning angles. The scaling of unsteady locomotor performance makes it difficult for large aquatic vertebrates to capture elusive prey by using whole-body attacks, since the overall maneuverability and acceleration of small prey is likely to be superior to that of large predators. Feeding strategies in vertebrate predators can be related to the predator-prey length ratios. At prey-predator ratios higher than approximately 10(-2), vertebrate predators are particulate feeders, while at smaller ratios, they tend to be filter feeders. At intermediate ratios, large aquatic predators may use a variety of feeding methods that aid, or do not involve, whole body attacks. Among these are bubble curtains used by humpback whales to trap fish schools, and tail-slapping of fish by delphinids. Tail slapping by killer whales is discussed as an example of these strategies. The speed and acceleration achieved by the flukes of killer whales during tail slaps are higher and comparable, respectively, to those that can be expected in their prey, making tail-slapping an effective predator behaviour.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hidden in plain sight: the ecology and physiology of organismal transparency.

             T. S. Johnsen (2001)
            Despite the prevalence and importance of transparency in organisms, particularly pelagic species, it is a poorly understood characteristic. This article reviews the current state of knowledge on the distribution, ecology, and physical basis of biological transparency. Particular attention is paid to the distribution of transparent species relative to their optical environment, the relationship between transparency and visual predation, the physics of transparency, and what is known about the anatomical and ultrastructural modifications required to achieve this condition. Transparency is shown to be primarily a pelagic trait, uncommon in other aquatic habitats and extremely rare on land. Experimental and theoretical studies in terrestrial, freshwater, and marine ecosystems have shown that transparency is a successful form of camouflage, and that several visual adaptations seem to counter it. The physical basis of transparency is still poorly understood, but anatomical observations and mathematical models show that there are various routes to transparency. Future avenues for research include examination of the ultrastructure and optical properties of transparent tissue, exploring the link between transparent species and special visual modifications in the species they interact with, and analysis of the evolution of transparency using comparative methods.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Predator and prey perception in copepods due to hydromechanical signals

                Bookmark

                Author and article information

                Journal
                Journal of Plankton Research
                Oxford University Press (OUP)
                1464-3774
                0142-7873
                January 01 2013
                January 01 2013
                : 35
                : 1
                : 49-65
                Article
                10.1093/plankt/fbs088
                © 2013

                Comments

                Comment on this article