69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective Disruption of Aurora C Kinase Reveals Distinct Functions from Aurora B Kinase during Meiosis in Mouse Oocytes

      research-article
      1 , 2 , 1 , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aurora B kinase (AURKB) is the catalytic subunit of the chromosomal passenger complex (CPC), an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT) attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I). We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction.

          Author Summary

          Precise control of chromosome segregation is essential for generating cells with the proper number of chromosomes. In germ cells, sperm and egg, an abnormal chromosome number leads to infertility, miscarriage, or, in the case of a live birth, developmental disorders such as Down Syndrome. For reasons not entirely clear, eggs are more prone to chromosome segregation mistakes than sperm. In this study, we study the role of a regulator of chromosome segregation, Aurora C kinase, in mouse oocytes. This is the first study to separate its function from Aurora B kinase that is highly similar in sequence. We find Aurora C is uniquely required to produce eggs with the proper number of chromosomes.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The spindle-assembly checkpoint in space and time.

          In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores

            The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromosomal passengers: conducting cell division.

              Mitosis and meiosis are remarkable processes during which cells undergo profound changes in their structure and physiology. These events are orchestrated with a precision that is worthy of a classical symphony, with different activities being switched on and off at precise times and locations throughout the cell. One essential 'conductor' of this symphony is the chromosomal passenger complex (CPC), which comprises Aurora-B protein kinase, the inner centromere protein INCENP, survivin and borealin (also known as Dasra-B). Studies of the CPC are providing insights into its functions, which range from chromosome-microtubule interactions to sister chromatid cohesion to cytokinesis, and constitute one of the most dynamic areas of ongoing mitosis and meiosis research.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2014
                27 February 2014
                : 10
                : 2
                : e1004194
                Affiliations
                [1 ]Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
                [2 ]Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
                University of Edinburgh, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AZB KS. Performed the experiments: AZB. Analyzed the data: AZB KS. Contributed reagents/materials/analysis tools: KS. Wrote the paper: AZB KS.

                Article
                PGENETICS-D-13-02432
                10.1371/journal.pgen.1004194
                3937256
                24586209
                de41fa2f-adf1-4244-b5af-d4d42b7409a9
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 September 2013
                : 6 January 2014
                Page count
                Pages: 17
                Funding
                This work was supported by a grant from the N.I.H. (R00HD061657) to KS and laboratory start-up funding from Rutgers University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Gene function
                Model organisms
                Animal models
                Mouse
                Molecular cell biology
                Signal transduction
                Signaling in selected disciplines
                Developmental signaling
                Cell division

                Genetics
                Genetics

                Comments

                Comment on this article