1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epidemiology of clinically relevant Entamoeba spp. (E. histolytica/ dispar/ moshkovskii/bangladeshi): A cross sectional study from North India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Entamoeba infections have major impact on millions of the people worldwide. Entamoeba histolytica has long been accepted as the only pathogenic species. However, recent reports of other Entamoeba spp. in symptomatic cases have raised questions on their pathogenicity.

          Methodology/Principal findings

          Total 474 stool samples and 125 liver aspirates from patients with intestinal and extra intestinal manifestations and from community were included. Sewage samples from the hospital and the city were also included. Microscopic examination and molecular detection were performed to detect presence of E. histolytica/ dispar/ moshkovskii/ bangladeshi. The associated demographic and socioeconomic factors were statistically analyzed with the presence of Entamoeba. Microscopy detected Entamoeba spp. in 5.4% stool and 6.4% liver aspirate samples. Through nested multiplex PCR, prevalence of Entamoeba spp. in intestinal and extra-intestinal cases was 6.6% (20/301) and 86.4% (108/125) respectively and in asymptomatic population was 10.5% (13/123). Sewage samples did not show presence of any Entamoeba spp. Uneducated subjects, low economic conditions, untreated drinking water, consumption of raw vegetables and habit of not washing hands before meals were significantly associated with presence of Entamoeba spp.

          Conclusions

          E. histolytica still remains the only Entamoeba spp. in invasive extra intestinal infections. E. dispar was detected in both asymptomatic and symptomatic intestinal infections. Routine identification of Entamoeba spp. should incorporate PCR based detection methods.

          Author summary

          Amoebiasis, a neglected tropical disease, caused by Entamoeba sp., is one of the leading causes of death due to any parasitic disease worldwide and have a major impact on millions of people. There has been constant debate on the commensal and pathogen status of several Entamoeba spp., owing to sporadic reports of infections due to different Entamoeba species. In view of this, we conducted this study to provide detailed data of prevalence of the Entamoeba species through molecular method in different types of samples among the susceptible population in an endemic region. Despite the existence of specific and sensitive molecular techniques, microscopy because of its affordability and accessibility remains the diagnostic tool for the Entamoeba infections. Microscopy cannot differentiate other related species from Entamoeba histolytica. Thus, World Health Organization has recommended the use of advanced techniques in the diagnosis of Entamoeba infection. Further, the most common mode of Entamoeba infections is the ingestion of contaminated food and water. In this regard face to face interviews were carried out to know about the demographic details and household habits which can be a major force driving these infections. The establishment of such data clears the epidemiological status and conveys the proper control measures for better health care.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

          Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe

            Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae) in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance) is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laboratory diagnostic techniques for Entamoeba species.

              The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: Data curationRole: Investigation
                Role: ResourcesRole: Supervision
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                7 September 2021
                September 2021
                : 15
                : 9
                : e0009762
                Affiliations
                [1 ] Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                [2 ] Department of Applied microbiology, Institute of Science, Banaras Hindu University, Varanasi, India
                [3 ] Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                NIH-National Institute for Research in Tuberculosis-ICER, INDIA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0003-0035-2842
                Article
                PNTD-D-21-00955
                10.1371/journal.pntd.0009762
                8448324
                34492023
                de499c05-467f-46fa-8bb1-49d6936fe324
                © 2021 Singh et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 June 2021
                : 25 August 2021
                Page count
                Figures: 1, Tables: 3, Pages: 12
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Protozoans
                Parasitic Protozoans
                Entamoeba Histolytica
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Abscesses
                Biology and Life Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Medicine and Health Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Engineering and Technology
                Sanitary Engineering
                Sewage
                People and Places
                Geographical Locations
                Asia
                India
                Ecology and Environmental Sciences
                Natural Resources
                Water Resources
                Medicine and Health Sciences
                Public and Occupational Health
                Hygiene
                Hand Washing
                Medicine and Health Sciences
                Gastroenterology and Hepatology
                Diarrhea
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Diarrhea
                Custom metadata
                vor-update-to-uncorrected-proof
                2021-09-17
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article