6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Locus Coeruleus Norepinephrine Regulates the Surge of Prolactin During Oestrus

      ,   , , , ,
      Journal of Neuroendocrinology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparative distribution of estrogen receptor-? and -? mRNA in the rat central nervous system

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha.

            Estrogen receptor alpha (ER alpha) and ER beta are members of the steroid nuclear receptor family that modulate gene transcription in an estrogen-dependent manner. ER mRNA and protein have been detected both peripherally and in the central nervous system, with most data having come from the rat. Here we report the development of an ER beta-selective antibody that cross-reacts with mouse, rat, and human ER beta protein and its use to determine the distribution of ER beta in the murine brain. Further, a previously characterized polyclonal antibody to ER alpha was used to compare the distribution of the two receptors in the first comprehensive description of ER distribution specifically in the mouse brain. ER beta immunoreactivity (ir) was primarily localized to cell nuclei within select regions of the brain, including the olfactory bulb, cerebral cortex, septum, preoptic area, bed nucleus of the stria terminalis, amygdala, paraventricular hypothalamic nucleus, thalamus, ventral tegmental area, substantia nigra, dorsal raphe, locus coeruleus, and cerebellum. Extranuclear-ir was detected in several areas, including fibers of the olfactory bulb, CA3 stratum lucidum, and CA1 stratum radiatum of the hippocampus and cerebellum. Although both receptors were generally expressed in a similar distribution through the brain, nuclear ER alpha-ir was the predominant subtype in the hippocampus, preoptic area, and most of the hypothalamus, whereas it was sparse or absent from the cerebral cortex and cerebellum. Collectively, these findings demonstrate the region-selective expression of ER beta and ER alpha in the adult ovariectomized mouse brain. These data provide an anatomical framework for understanding the mechanisms by which estrogen regulates specific neural systems in the mouse.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems.

              Expression of c-Fos, or other immediate early gene products, by individual neurons can be used as a marker of cell activation, making staining of these proteins an extremely useful technique for functional anatomical mapping of neuroendocrine systems. Because these proteins are located in the nucleus, identification of the phenotype of the activated neuron using substances located within the cytoplasm can be accomplished with standard double-labeling immunocytochemical techniques. Although it is clear that neurons have the capacity to express a number of immediate early gene products, what remains to be established is whether there is a different pattern of expression following various stimuli. In our studies, we focus primarily on expression of one immediate early gene product, the c-Fos protein. We also include some experiments using expression of other members of the Fos family and Jun proteins as markers for neuronal activation. Our studies describe uses of c-Fos expression in both parvocellular and magnocellular hypothalamic systems to address the following issues: (a) identification of neuroendocrine cells activated by specific treatments and conditions, (b) ascertainment of functional differences in subpopulations activated by specific stimuli, (c) evaluation of neuronal activity in complex areas containing multiple neuroendocrine systems, (d) identification of other brain areas activated in conjunction with neuroendocrine systems following specific stimuli, (e) analysis of connectivity of activated neuroendocrine systems with other parts of the brain, and (f) identification of stimuli that decrease neuronal activity. The neuroendocrine systems studied include those that secrete arginine vasopressin (AVP), oxytocin (OT), corticotropin-releasing hormone (CRH), luteinizing hormone-releasing hormone (LHRH), and dopamine (DA). The use of c-Fos expression has permitted functional neuroanatomical mapping of these systems in response to specific stimuli such as cholecystokinin (CCK), hyperosmolality, and volume depletion, or during various physiological states such as the proestrous ovulatory luteinizing hormone (LH) surge and lactation. Although the use of c-Fos as a marker of neuronal activation will continue to be an extremely powerful technique, future studies will also be directed at relating immediate early gene expression to changes in neuroendocrine gene expression. To this end, we have shown that both c-Fos and c-Jun are expressed in neuroendocrine neurons in response to a number of stimuli, setting the stage for potential regulatory drive to genes containing AP-1 binding sites.
                Bookmark

                Author and article information

                Journal
                Journal of Neuroendocrinology
                J Neuroendocrinol
                Wiley
                0953-8194
                1365-2826
                October 2005
                October 2005
                : 17
                : 10
                : 639-648
                Article
                10.1111/j.1365-2826.2005.01351.x
                de53ee54-1640-4e3c-b648-a82d285deae6
                © 2005

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article