18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Treating statin-intolerant patients

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Statins are effective in reducing cardiovascular events and are safe for almost all patients. Nevertheless, intolerance to statins is frequently faced in clinical practice. This is mostly due to muscular symptoms (myalgia with or without increase of plasma creatinine kinase) and/or elevation of hepatic aminotransferases, which overall constitutes approximately two-thirds of reported adverse events during statin therapy. These side effects raise concerns in patients as well as in doctors and are likely to reduce patients’ adherence and, as a consequence, the cardiovascular benefit. Therefore, it is mandatory that clinicians improve their knowledge on the clinical aspects of muscular and hepatic side effects of statin therapy as well as their ability to manage patients with statin intolerance. Besides briefly examining the clinical aspects and the mechanisms that are proposed to be responsible for the most common statin-associated side effects, the main purpose of this article is to review the available approaches to manage statin-intolerant patients. The first step is to determine whether the adverse events are indeed related to statin therapy. If so, lowering the dosage or changing statin, alternate dosing options, or the use of nonstatin compounds may be practical strategies. The cholesterol-lowering potency as well as the usefulness of these different approaches in treating statin-intolerant patients will be examined based on currently available data. However, the cardiovascular benefit of these strategies has not been well established, so their use has to be guided by a careful clinical assessment of each patient.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          The safety of statins in clinical practice.

          Statins are effective cholesterol-lowering drugs that reduce the risk of cardiovascular disease events (heart attacks, strokes, and the need for arterial revascularisation). Adverse effects from some statins on muscle, such as myopathy and rhabdomyolysis, are rare at standard doses, and on the liver, in increasing levels of transaminases, are unusual. Myopathy--muscle pain or weakness with blood creatine kinase levels more than ten times the upper limit of the normal range--typically occurs in fewer than one in 10,000 patients on standard statin doses. However, this risk varies between statins, and increases with use of higher doses and interacting drugs. Rhabdomyolysis is a rarer and more severe form of myopathy, with myoglobin release into the circulation and risk of renal failure. Stopping statin use reverses these side-effects, usually leading to a full recovery. Asymptomatic increases in concentrations of liver transaminases are recorded with all statins, but are not clearly associated with an increased risk of liver disease. For most people, statins are safe and well-tolerated, and their widespread use has the potential to have a major effect on the global burden of cardiovascular disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B.

            The effect of intensive lipid-lowering therapy on coronary atherosclerosis among men at high risk for cardiovascular events was assessed by quantitative arteriography. Of 146 men no more than 62 years of age who had apolipoprotein B levels greater than or equal to 125 mg per deciliter, documented coronary artery disease, and a family history of vascular disease, 120 completed the 2 1/2-year double-blind study, which included arteriography at base line and after treatment. Patients were given dietary counseling and were randomly assigned to one of three treatments: lovastatin (20 mg twice a day) and colestipol (10 g three times a day); niacin (1 g four times a day) and colestipol (10 g three times a day); or conventional therapy with placebo (or colestipol if the low-density lipoprotein [LDL] cholesterol level was elevated). The levels of LDL and high-density lipoprotein (HDL) cholesterol changed only slightly in the conventional-therapy group (mean changes, -7 and +5 percent, respectively), but more substantially among patients treated with lovastatin and colestipol (-46 and +15 percent) or niacin and colestipol (-32 and +43 percent). In the conventional-therapy group, 46 percent of the patients had definite lesion progression (and no regression) in at least one of nine proximal coronary segments; regression was the only change in 11 percent. By comparison, progression (as the only change) was less frequent among patients who received lovastatin and colestipol (21 percent) and those who received niacin and colestipol (25 percent), and regression was more frequent (lovastatin and colestipol, 32 percent; niacin and colestipol, 39 percent; P less than 0.005). Multivariate analysis indicated that a reduction in the level of apolipoprotein B (or LDL cholesterol) and in systolic blood pressure, and an increase in HDL cholesterol correlated independently with regression of coronary lesions. Clinical events (death, myocardial infarction, or revascularization for worsening symptoms) occurred in 10 of 52 patients assigned to conventional therapy, as compared with 3 of 46 assigned to receive lovastatin and colestipol and 2 of 48 assigned to receive niacin and colestipol (relative risk of an event during intensive treatment, 0.27; 95 percent confidence interval, 0.10 to 0.77). In men with coronary artery disease who were at high risk for cardiovascular events, intensive lipid-lowering therapy reduced the frequency of progression of coronary lesions, increased the frequency of regression, and reduced the incidence of cardiovascular events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical pharmacokinetics of atorvastatin.

              Hypercholesterolaemia is a risk factor for the development of atherosclerotic disease. Atorvastatin lowers plasma low-density lipoprotein (LDL) cholesterol levels by inhibition of HMG-CoA reductase. The mean dose-response relationship has been shown to be log-linear for atorvastatin, but plasma concentrations of atorvastatin acid and its metabolites do not correlate with LDL-cholesterol reduction at a given dose. The clinical dosage range for atorvastatin is 10-80 mg/day, and it is given in the acid form. Atorvastatin acid is highly soluble and permeable, and the drug is completely absorbed after oral administration. However, atorvastatin acid is subject to extensive first-pass metabolism in the gut wall as well as in the liver, as oral bioavailability is 14%. The volume of distribution of atorvastatin acid is 381L, and plasma protein binding exceeds 98%. Atorvastatin acid is extensively metabolised in both the gut and liver by oxidation, lactonisation and glucuronidation, and the metabolites are eliminated by biliary secretion and direct secretion from blood to the intestine. In vitro, atorvastatin acid is a substrate for P-glycoprotein, organic anion-transporting polypeptide (OATP) C and H+-monocarboxylic acid cotransporter. The total plasma clearance of atorvastatin acid is 625 mL/min and the half-life is about 7 hours. The renal route is of minor importance (<1%) for the elimination of atorvastatin acid. In vivo, cytochrome P450 (CYP) 3A4 is responsible for the formation of two active metabolites from the acid and the lactone forms of atorvastatin. Atorvastatin acid and its metabolites undergo glucuronidation mediated by uridinediphosphoglucuronyltransferases 1A1 and 1A3. Atorvastatin can be given either in the morning or in the evening. Food decreases the absorption rate of atorvastatin acid after oral administration, as indicated by decreased peak concentration and increased time to peak concentration. Women appear to have a slightly lower plasma exposure to atorvastatin for a given dose. Atorvastatin is subject to metabolism by CYP3A4 and cellular membrane transport by OATP C and P-glycoprotein, and drug-drug interactions with potent inhibitors of these systems, such as itraconazole, nelfinavir, ritonavir, cyclosporin, fibrates, erythromycin and grapefruit juice, have been demonstrated. An interaction with gemfibrozil seems to be mediated by inhibition of glucuronidation. A few case studies have reported rhabdomyolysis when the pharmacokinetics of atorvastatin have been affected by interacting drugs. Atorvastatin increases the bioavailability of digoxin, most probably by inhibition of P-glycoprotein, but does not affect the pharmacokinetics of ritonavir, nelfinavir or terfenadine.
                Bookmark

                Author and article information

                Journal
                Diabetes Metab Syndr Obes
                Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
                Dove Medical Press
                1178-7007
                2011
                28 April 2011
                : 4
                : 155-166
                Affiliations
                Atherosclerosis Unit, Department of Internal Medicine and Allied Medical Specialities, Sapienza University of Rome, Rome, Italy
                Author notes
                Correspondence: Marcello Arca, Dipartimento di Medicina Interna e, Specialità Mediche, Sapienza Università di Roma, Azienda Policlinico Umberto I, Viale del Policlinico, 155, 00161, Rome, Italy, Tel +39 06 4451354, Fax +39 06 4463534, Email marcelloarca@ 123456libero.it
                Article
                dmso-4-155
                10.2147/DMSO.S11244
                3138147
                21779147
                de592801-c8ad-459a-aa5f-9a9008e60cec
                © 2011 Arca and Pigna, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                : 27 April 2011
                Categories
                Review

                Endocrinology & Diabetes
                statin therapy,atorvastatin,rosuvastatin,aminotransferase levels,myopathy
                Endocrinology & Diabetes
                statin therapy, atorvastatin, rosuvastatin, aminotransferase levels, myopathy

                Comments

                Comment on this article