19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of retinal pigment epithelial phenotypic variation using laser scanning cytometry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Quantifying phenotypic variation at the level of protein expression (variegation) within populations of retinal pigment epithelium (RPE) cells may be important in the study of pathologies associated with this variation. The lack of quantitative methods for examining single cells, however, and the variable presence of pigment and/or lipofuscin complicate this experimental goal. We have applied the technique of laser scanning cytometry (LSC) to paraffin sections of mouse and human eyes to evaluate the utility of LSC for these measurements.

          Methods

          Mouse eyes were perfusion fixed in 4% paraformaldehyde and embedded in paraffin. Postmortem human eyes were fixed and dissected to obtain a 9-mm punch, which was then embedded in paraffin. A laser scanning cytometer equipped with violet, argon, and helium-neon lasers and the detectors for blue, green, and long red were used to record the fluorescence of each individual cell at all three wavelengths. Raw data were recorded and processed using the WinCyte software. Individual nuclei were identified by the fluorescence of the 4’,6-diamidino-2-phenylindole (DAPI) nuclear counterstain. Next, RPE cells were uniquely identified in the green channel using an anti-retinal pigment epithelium-specific protein 65 kDa (anti-RPE65) monoclonal antibody with an Alexa Fluor 488-labeled secondary antibody. Mn-superoxide dismutase (MnSOD) was quantified in the long-red channel using an anti-MnSOD antibody and an Alexa Fluor 647-labeled secondary antibody. MnSOD + and RPE65 + cells exhibited peaks in the plot of fluorescence intensity versus cell number, which could be characterized by the mean fluorescence intensity (MFI), the coefficient of variation (CV), and the percentage of total RPE cells that were also labeled for MnSOD.

          Results

          RPE cells can be uniquely identified in human and mouse paraffin sections by immunolabeling with anti-RPE65 antibody. A second antigen, such as MnSOD, can then be probed only within this set of RPE. Results are plotted primarily with the population frequency diagram, which can be subdivided into multiple regions. The data collected for each region include the MFI, the CV, and the number of cells that are immunolabeled in that region. Background interference from pigment or autofluorescent material can be successfully overcome by elevating the concentrations of fluorescent secondary antibodies. In the human and mouse eyes, age-related changes in MFI, CV, and percent RPE cells immunolabeled for MnSOD were observed.

          Conclusions

          The extent of the variability of gene expression in RPE cells at the protein level can be quantified by LSC. Relative changes in the MFI, the CV, and/or percentage of RPE cells double labeled for a second antigen quantify the changes observed. The analysis of these data also suggest whether the effects observed are related to local changes in transcription (alterations of CV) or major changes of protein expression (MFI), which are likely to be due to changes in the chromatin structure. The changes of these variables with age suggest that the observed age-related variegation is primarily due to changes in the chromatin structure in individual cells.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Stochasticity in gene expression: from theories to phenotypes.

          Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic.

            Retinal pigment epithelial (RPE) cells are critical for the health of the retina, especially the photoreceptors. A recent study demonstrated that individual RPE cells could be imaged in macaque in vivo by detecting autofluorescence with an adaptive optics scanning laser ophthalmoscope (AOSLO). The current study extended this method to image RPE cells in fixating humans in vivo and to quantify the RPE mosaic characteristics in the central retina of normal humans and macaques. The retina was imaged simultaneously with two light channels in a fluorescence AOSLO; one channel was used for reflectance imaging of the cones while the other detected RPE autofluorescence. The excitation light was 568 nm, and emission was detected over a 40-nm range centered at 624 nm. Reflectance frames were registered to determine interframe eye motion, the motion was corrected in the simultaneously recorded autofluorescence frames, and the autofluorescence frames were averaged to give the final RPE mosaic image. In vivo imaging demonstrated that with increasing eccentricity, RPE cell density, and mosaic regularity decreased, whereas RPE cell size and spacing increased. Repeat measurements of the same retinal location 42 days apart showed the same RPE cells and distribution. The RPE cell mosaic has been resolved for the first time in alert fixating human subjects in vivo using AOSLO. Mosaic analysis provides a quantitative database for studying normal and diseased RPE in vivo. This technique will allow longitudinal studies to track disease progression and assess treatment efficacy in patients and animal models of retinal disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras.

              Chimeric rats were produced by the aggregation of embryos of the pinkeyed, retinal dystrophic RCS strain with those of pigmented, normal rats. In the mosaic eyes, patches of neural retina with abnormal and degenerated photoreceptors were present only opposite patches of nonpigmented, mutant pigment epithelium. This indicates that the retinal dystrophy gene acts in the pigment epithelial cell rather than in the photoreceptor cell.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2010
                16 June 2010
                : 16
                : 1108-1121
                Affiliations
                [1 ]Department of Ophthalmology, School of Medicine, University of California at Davis, Davis, CA
                [2 ]Department of Internal Medicine, Division of Rheumatology, School of Medicine, University of California at Davis, Davis, CA
                [3 ]Department of Ophthalmology, Nagasaki University, Nagasaki, Japan
                Author notes
                Correspondence to: LM Hjelmeland, University of California, Vitreoretinal Research Lab, 2403 Tupper Hall, Davis, CA, 95616; Phone: (530) 752-2250; FAX: (530) 752-2270; email: lmhjelmeland@ 123456ucdavis.edu
                Article
                123 2009MOLVIS0215
                2893051
                20606706
                de639795-02eb-47a3-a3c2-d8ccd4617d16
                Copyright © 2010 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 June 2009
                : 10 June 2010
                Categories
                Research Article
                Custom metadata
                Export to XML
                Hjelmeland

                Vision sciences
                Vision sciences

                Comments

                Comment on this article