16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

      , 1 , 2

      Infectious Agents and Cancer

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days) has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity.

          Presentation of the hypothesis

          This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections.

          Testing the hypothesis

          The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation) to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells) of the cold-exposed group would be compared to those of control groups (warm swim and no treatment). Cold-water stress would be administered twice a day for the duration of several months.

          Implications of the hypothesis

          If the hypothesis is supported by empirical studies and the method is shown to be safe, this could lead to the development of an adjunctive immunotherapy for some (non-lymphoid) cancers, including those caused by viral infections.

          Related collections

          Most cited references 138

          • Record: found
          • Abstract: found
          • Article: not found

          The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system.

          The brain and the immune system are the two major adaptive systems of the body. During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis. Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis. Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs. Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation. Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells. Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest. In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta. Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity. On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production. Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages. The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth. Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures.

            Postoperative immunosuppression is partly ascribed to anesthesia and has been suggested to compromise patients' resistance to infection and tumor metastasis. We compared the effects of various anesthetics on natural killer (NK) cell activity and on resistance to experimental metastasis, and studied mediating mechanisms and prophylactic measures. Fischer 344 rats served as controls or were anesthetized for 1 h with ketamine, thiopental, halothane, or propofol. Anesthetized rats were either maintained in normothermia or left to spontaneously reach 33 degrees C-35 degrees C. Rats were then injected IV with MADB106 tumor cells, and 24 h later lung tumor retention was assessed, or 3 wk later, lung metastases were counted. Additionally, the number and activity of circulating NK cells were assessed after anesthesia. All anesthetics, except propofol, significantly reduced NK activity and increased MADB106 lung tumor retention or lung metastases. Hypothermia had no significant effects. Ketamine increased metastasis most potently, and this effect was markedly reduced in rats pretreated with a beta-adrenergic antagonist (nadolol) or with chronic small doses of an immunostimulator (polyriboinosinic:polyribocytidylic acid). Overall, the marked variation in the NK-suppressive effects of anesthetics seems to underlie their differential promotion of MADB106 metastasis. Prophylactic measures may include perioperative immunostimulation and the use of beta-blockers. This study in a rat model of pulmonary metastasis demonstrates that some anesthetics, but not others, increase susceptibility to tumor metastasis, apparently by suppressing natural killer cell activity. Ketamine was most deleterious, and its effects were prevented by peripheral blockade of beta-adrenoceptors combined with low levels of immunostimulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catecholamine-induced leukocytosis: early observations, current research, and future directions.

              Recent studies demonstrate that acute psychological stress in man affects lymphocyte circulation. It has been suggested that catecholamines are responsible for these changes. The present review summarizes findings regarding catecholamine-induced lympho- and leukocytosis, starting with observations dating back to the beginning of this century. Particular attention is given to the mechanisms of this phenomenon and the potential site of origin of newly appearing leukocytes. Characteristically, two phases are recognized after catecholamine administration: a quick (<30 min) mobilization of lymphocytes, followed by an increase in granulocyte numbers with decreasing lymphocyte numbers. Many studies have shown that catecholamines predominantly affect natural killer (NK) cell and granulocyte circulation, whereas T- and B-cell numbers remain relatively unaffected. The changes in lymphocyte circulation seem to be mainly mediated via activation of beta2-adrenoceptors, whereas granulocyte increases involve alpha-adrenoceptor stimulation. Results further indicate that the marginal pool and the spleen are the major sources for freshly recruited lymphocytes, whereas granulocytes are predominantly released from the marginal pool and the lung. Results from acute psychological stress or physical exercise models corroborate the results obtained with catecholamine administration. Together, the data demonstrate that components of the innate immune system participate in the classical fight/flight response.
                Bookmark

                Author and article information

                Journal
                Infect Agent Cancer
                Infectious Agents and Cancer
                BioMed Central
                1750-9378
                2007
                13 November 2007
                : 2
                : 20
                Affiliations
                [1 ]Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
                [2 ]Center for Cancer and Immunology Research, Children's Research Institute, Washington DC, USA
                Article
                1750-9378-2-20
                10.1186/1750-9378-2-20
                2211456
                17999770
                Copyright © 2007 Shevchuk and Radoja; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Hypothesis

                Oncology & Radiotherapy

                Comments

                Comment on this article