21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the southeastern tropical Pacific anchovy ( Engraulis ringens) and sardine ( Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences.

          Methodology/Principal Findings

          A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem.

          Conclusions/Significance

          For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

          A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expanding oxygen-minimum zones in the tropical oceans.

            Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series of dissolved-oxygen concentration for select tropical oceanic regions by augmenting a historical database with recent measurements. These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years. The oxygen decrease in the 300- to 700-m layer is 0.09 to 0.34 micromoles per kilogram per year. Reduced oxygen levels may have dramatic consequences for ecosystems and coastal economies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thresholds of hypoxia for marine biodiversity.

              Hypoxia is a mounting problem affecting the world's coastal waters, with severe consequences for marine life, including death and catastrophic changes. Hypoxia is forecast to increase owing to the combined effects of the continued spread of coastal eutrophication and global warming. A broad comparative analysis across a range of contrasting marine benthic organisms showed that hypoxia thresholds vary greatly across marine benthic organisms and that the conventional definition of 2 mg O(2)/liter to designate waters as hypoxic is below the empirical sublethal and lethal O(2) thresholds for half of the species tested. These results imply that the number and area of coastal ecosystems affected by hypoxia and the future extent of hypoxia impacts on marine life have been generally underestimated.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 December 2011
                : 6
                : 12
                : e29558
                Affiliations
                [1 ]Institut de Recherche pour le Développement (IRD), UMR212 EME IFEREMER/IRD/UM2, Sète, France
                [2 ]Instituto del Mar del Perú, Esquina Gamarra y Gral, Valle s/n, Callao, Lima, Peru
                [3 ]IRD, UMR LEGOS, Toulouse, France
                [4 ]IRD, IPSL/LOCEAN, UPMC/CNRS/IRD/MNHN, Paris, France
                [5 ]Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
                Utrecht University, The Netherlands
                Author notes

                Conceived and designed the experiments: AB. Performed the experiments: AB AC SP JL. Analyzed the data: AB AC SP JL MG FM. Contributed reagents/materials/analysis tools: AB AC SP JL MG FM FPC. Wrote the paper: AB AC FPC.

                Article
                PONE-D-11-19544
                10.1371/journal.pone.0029558
                3247266
                22216315
                de744c7f-c219-4a58-86d9-4f38b8cb9788
                Bertrand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 October 2011
                : 30 November 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Marine Environments
                Biogeochemistry
                Community Ecology
                Marine Ecology
                Marine Biology
                Marine Ecology
                Zoology
                Ichthyology
                Earth Sciences
                Marine and Aquatic Sciences
                Oceanography
                Ocean Properties
                Oceans
                Pacific Ocean
                Marine Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article