35
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Advanced Paternal Age Is Associated with Impaired Neurocognitive Outcomes during Infancy and Childhood

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Advanced paternal age (APA) is associated with an increased risk of neurodevelopmental disorders such as autism and schizophrenia, as well as with dyslexia and reduced intelligence. The aim of this study was to examine the relationship between paternal age and performance on neurocognitive measures during infancy and childhood.

          Methods and Findings

          A sample of singleton children ( n = 33,437) was drawn from the US Collaborative Perinatal Project. The outcome measures were assessed at 8 mo, 4 y, and 7 y (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test, Wechsler Intelligence Scale for Children, Wide Range Achievement Test). The main analyses examined the relationship between neurocognitive measures and paternal or maternal age when adjusted for potential confounding factors. Advanced paternal age showed significant associations with poorer scores on all of the neurocognitive measures apart from the Bayley Motor score. The findings were broadly consistent in direction and effect size at all three ages. In contrast, advanced maternal age was generally associated with better scores on these same measures.

          Conclusions

          The offspring of older fathers show subtle impairments on tests of neurocognitive ability during infancy and childhood. In light of secular trends related to delayed fatherhood, the clinical implications and the mechanisms underlying these findings warrant closer scrutiny.

          Abstract

          Using a sample of children from the US Collaborative Perinatal Project, John McGrath and colleagues show that the offspring of older fathers exhibit subtle impairments on tests of neurocognitive ability during infancy and childhood.

          Editors' Summary

          Background.

          Over the last few decades, changes in society in the developed world have made it increasingly common for couples to wait until their late thirties to have children. In 1993, 25% of live births within marriage in England and Wales were to fathers aged 35–54 years, but by 2003 it was 40%. It is well known that women's fertility declines with age and that older mothers are more likely to have children with disabilities such as Down's syndrome. In contrast, many men can father children throughout their lives, and little attention has been paid to the effects of older fatherhood.

          More recent evidence shows that a man's age does affect both fertility and the child's health. “Advanced paternal age” has been linked to miscarriages, birth deformities, cancer, and specific behavioral problems such as autism or schizophrenia.

          Rates of autism have increased in recent decades, but the cause is unknown. Studies of twins and families have suggested there may be a complex genetic basis, and it is suspected that damage to sperm, which can accumulate over a man's lifetime, may be responsible. A woman's eggs are formed largely while she is herself in the womb, but sperm-making cells divide throughout a man's lifetime, increasing the chance of mutations in sperm.

          Why Was This Study Done?

          There is good evidence linking specific disorders with older fathers, but the link between a father's age and a child's more general intelligence is not as clear. A recent study suggested a link between reduced intelligence and both very young and older fathers. The authors wanted to use this large dataset to test the idea that older fathers have children who do worse on tests of intelligence. They also wanted to re-examine others' findings using this same dataset that older mothers have more intelligent children.

          What Did the Researchers Do and Find?

          The researchers gathered no new data but reanalyzed data on children from the US Collaborative Perinatal Project (CPP), which had used a variety of tests given to children at ages 8 months, 4 years, and 7 years, to measure cognitive ability—the ability to think and reason, including concentration, memory, learning, understanding, speaking, and reading. Some tests included assessments of “motor skills”—physical co-ordination.

          The CPP dataset holds information on children of 55,908 expectant mothers who attended 12 university-affiliated hospital clinics in the United States from 1959 to 1965. The researchers excluded premature babies and multiple births and chose one pregnancy at random for each eligible woman, to keep their analysis simpler. This approach reduced the number of children in their analysis to 33,437.

          The researchers analyzed the data using two models. In one, they took into account physical factors such as the parents' ages. In the other, they also took into account social factors such as the parents' level of education and income, which are linked to intelligence. In addition, the authors grouped the children by their mother's age and, within each group, looked for a link between the lowest-scoring children and the age of their father.

          The researchers found that children with older fathers had lower scores on all of the measures except one measure of motor skills. In contrast, children with older mothers had higher scores. They found that the older the father, the more likely was this result found.

          What Do These Findings Mean?

          This study is the first to show that children of older fathers perform less well in a range of tests when young, but cannot say whether those children catch up with their peers after the age of 7 years. Results may also be biased because information was more likely to be missing for children whose father's age was not recorded.

          Previous researchers had proposed that children of older mothers may perform better in tests because they experience a more nurturing home environment. If this is the case, children of older fathers do not experience the same benefit.

          However, further work needs to be done to confirm these findings. Especially in newer datasets, current trends to delay parenthood mean these findings have implications for individuals, couples, and policymakers. Individuals and couples need to be aware that the ages of both partners can affect their ability to have healthy children, though the risks for individual children are small. Policymakers should consider promoting awareness of the risks of delaying parenthood or introducing policies to encourage childbearing at an optimal age.

          Additional Information.

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000040.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Association between microdeletion and microduplication at 16p11.2 and autism.

          Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations. Copyright 2008 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large recurrent microdeletions associated with schizophrenia.

            Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeat instability: mechanisms of dynamic mutations.

              Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                plme
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                March 2009
                10 March 2009
                : 6
                : 3
                : e1000040
                Affiliations
                [1 ] Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Australia
                [2 ] Institute of Health and Biomedical Innovation and School of Public Health, Queensland University of Technology, Kelvin Grove, Australia
                [3 ] Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
                [4 ] Department of Community Health, Brown University, Providence, Rhode Island, United States of America
                [5 ] Department of Psychiatry, The University of Queensland, St. Lucia, Australia
                University of Cambridge, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: john_mcgrath@ 123456qcmhr.uq.edu.au
                Article
                08-PLME-RA-2455R2 plme-06-03-07
                10.1371/journal.pmed.1000040
                2653549
                19278291
                de788083-6cad-418f-92eb-4d0684850cf4
                Copyright: © 2009 Saha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 September 2008
                : 15 January 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Mental Health
                Public Health and Epidemiology
                Custom metadata
                Saha S, Barnett AG, Foldi C, Burne TH, Eyles DW, et al. (2009) Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med 6(3): e1000040. doi: 10.1371/journal.pmed.1000040

                Medicine
                Medicine

                Comments

                Comment on this article