Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Resistant Paediatric Somatotropinomas due to AIP Mutations: Role of Pegvisomant

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Somatotropinomas are rare in childhood and frequently associated with genetic mutations. AIP mutations are found in 20–25% cases and cause aggressive somatotropinomas, often resistant to somatostatin analogues. Aims: To assess responses to multimodal therapy including pegvisomant in 2 children with sporadic somatotropinomas due to AIP mutations. Case Description: We report 2 children, a boy aged 13 and a girl aged 10, with rapid growth, visual impairment, and growth hormone hypersecretion. Magnetic resonance imaging confirmed a pituitary macroadenoma with parasellar extension in both. Despite multiple surgical attempts to debulk tumour mass, residual tumour persisted. Genetic analysis showed two different AIP mutations (patient 1: c.562delC [p.Arg188Glyfs*8]; patient 2: c.140_ 163del24 [p.Gly47_Arg54del8]). They were initially treated with a long-acting somatostatin analogue (octreotide LAR 30 mg/month) and cabergoline as a dopamine agonist, with the later addition of pegvisomant titrated up to 20 mg/day and with radiotherapy for long-term control. Somatostatin analogue was ceased due to patient intolerance and lack of control. Patient 1 had normalization of insulin-like growth factor-1 (IGF-1) after 5 months of combined therapy with pegvisomant and cabergoline. For patient 2, normalization of IGF-1 was achieved after 2 months of cabergoline and pegvisomant. Conclusion: AIP-associated tumours can be resistant to management with somatostatin analogues. Pegvisomant can safely be used, to normalize IGF-1 levels and help control disease.

          Related collections

          Most cited references 10

          • Record: found
          • Abstract: found
          • Article: not found

          Acromegaly: an endocrine society clinical practice guideline.

          The aim was to formulate clinical practice guidelines for acromegaly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study.

            AIP mutations (AIPmut) give rise to a pituitary adenoma predisposition that occurs in familial isolated pituitary adenomas and less often in sporadic cases. The clinical and therapeutic features of AIPmut-associated pituitary adenomas have not been studied comprehensively. The objective of the study was to assess clinical/therapeutic characteristics of AIPmut pituitary adenomas. This study was an international, multicenter, retrospective case collection/database analysis. The study was conducted at 36 tertiary referral endocrine and clinical genetics departments. Patients included 96 patients with germline AIPmut and pituitary adenomas and 232 matched AIPmut-negative acromegaly controls. The AIPmut population was predominantly young and male (63.5%); first symptoms occurred as children/adolescents in 50%. At diagnosis, most tumors were macroadenomas (93.3%); extension and invasion was common. Somatotropinomas comprised 78.1% of the cohort; there were also prolactinomas (n = 13), nonsecreting adenomas (n = 7), and a TSH-secreting adenoma. AIPmut somatotropinomas were larger (P = 0.00026), with higher GH levels (P = 0.00068), more frequent extension (P = 0.018) and prolactin cosecretion (P = 0.00023), and occurred 2 decades before controls (P < 0.000001). Gigantism was more common in the AIPmut group (P < 0.000001). AIPmut somatotropinoma patients underwent more surgical interventions (P = 0.00069) and had lower decreases in GH (P = 0.00037) and IGF-I (P = 0.028) and less tumor shrinkage with somatostatin analogs (P < 0.00001) vs. controls. AIPmut prolactinomas occurred generally in young males and frequently required surgery or radiotherapy. AIPmut pituitary adenomas have clinical features that may negatively impact treatment efficacy. Predisposition for aggressive disease in young patients, often in a familial setting, suggests that earlier diagnosis of AIPmut pituitary adenomas may have clinical utility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes.

              The prevalence of germline mutations in MEN1, AIP, PRKAR1A, CDKN1B and CDKN2CI is unknown among pediatric patients with pituitary adenomas (PA). In this study, we screened children with PA for mutations in these genes; somatic GNAS mutations were also studied in a limited number of growth hormone (GH) or prolactin (PRL)-secreting PA. We studied 74 and 6 patients with either isolated Cushing disease (CD) or GH- or PRL-secreting PA, respectively. We also screened four pediatric patients with CD, and four with GH/PRL-secreting tumors who had some syndromic features. There was one AIP mutation (p.Lys103Arg) among 74 CD patients. Two MEN1 mutations that occurred in patients with recurrent or difficult-to-treat disease were found among patients with CD. There was one MEN1 and three AIP mutations (p.Gln307ProfsX104, p.Pro114fsX, p.Lys241X) among pediatric patients with isolated GH- or PRL-secreting PA and one additional MEN1 mutation in a patient with positive family history. There were no mutations in the PRKAR1A, CDKN1B, CDKN2C or GNAS genes. Thus, germline AIP or MEN1 gene mutations are frequent among pediatric patients with GH- or PRL-secreting PA but are significantly rarer in pediatric CD; PRKAR1A mutations are not present in PA outside of Carney complex. © 2010 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                HRP
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                2018
                November 2018
                28 June 2018
                : 90
                : 3
                : 196-202
                Affiliations
                aMurdoch Children’s Research Institute, Parkville, Victoria, Australia
                bThe Royal Children’s Hospital, Parkville, Victoria, Australia
                cCentre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
                Author notes
                *Prof. Margaret Zacharin, The Royal Children’s Hospital, Parkville, VIC 3052 (Australia), E-Mail Margaret.Zacharin@rch.org.au
                Article
                488856 Horm Res Paediatr 2018;90:196–202
                10.1159/000488856
                29953972
                © 2018 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 2, Pages: 7
                Categories
                Novel Insights from Clinical Practice

                Comments

                Comment on this article