28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-Term Valproate Treatment Increases Brain Neuropeptide Y Expression and Decreases Seizure Expression in a Genetic Rat Model of Absence Epilepsy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms by which valproate, one of the most widely prescribed anti-epileptic drugs, suppresses seizures have not been fully elucidated but may involve up-regulation of neuropeptide Y (NPY). We investigated the effects of valproate treatment in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) on brain NPY mRNA expression and seizure control. GAERS were administered either valproate (42 mg.kg −1 hr −1) or saline continuously for 5 days. Electroencephalograms were recorded for 24 hrs on treatment days 1, 3 and 5 and the percentage of time spent in seizure activity was analysed. NPY mRNA expression was measured in different brain regions using qPCR. Valproate treatment suppressed seizures by 80% in GAERS (p<0.05) and increased NPY mRNA expression in the thalamus (p<0.05) compared to saline treatment. These results demonstrate that long-term valproate treatment results in an upregulation of thalamic expression of NPY implicating this as a potential contributor to the mechanism by which valproate suppresses absence seizures.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep, epilepsy and thalamic reticular inhibitory neurons.

          M Steriade (2005)
          Thalamic reticular neurons release the potent inhibitory neurotransmitter GABA and their main targets are thalamocortical neurons in the dorsal thalamus. This article focuses on two topics: (i) the role of thalamic reticular neurons in the initiation of spindles, a hallmark oscillation during early sleep stages; and (ii) the reticular-induced inhibition of thalamocortical neurons during cortically generated spike-wave seizures. Although hotly debated during the past decade, the idea of spindle generation by a network of GABAergic reticular neurons was recently supported by in vivo and in computo studies demonstrating interactions between inhibitory reticular neurons that lead to spindle sequences. During spike-wave seizures and electrical paroxysms of the Lennox-Gastaut type, which arise in the neocortex, reticular neurons are powerfully excited through corticofugal projections and they produce prolonged inhibitory postsynaptic potentials in thalamocortical neurons. Thus, GABAergic reticular neurons are crucial in the generation of some sleep rhythms, which produce synaptic plasticity, and in inhibiting external signals through thalamocortical neurons, which leads to unconsciousness during absence epilepsy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience.

            Thirty-five years since its introduction into clinical use, valproate (valproic acid) has become the most widely prescribed antiepileptic drug (AED) worldwide. Its pharmacological effects involve a variety of mechanisms, including increased gamma-aminobutyric acid (GABA)-ergic transmission, reduced release and/or effects of excitatory amino acids, blockade of voltage-gated sodium channels and modulation of dopaminergic and serotoninergic transmission. Valproate is available in different dosage forms for parenteral and oral use. All available oral formulations are almost completely bioavailable, but they differ in dissolution characteristics and absorption rates. In particular, sustained-release formulations are available that minimise fluctuations in serum drug concentrations during a dosing interval and can therefore be given once or twice daily. Valproic acid is about 90% bound to plasma proteins, and the degree of binding decreases with increasing drug concentration within the clinically occurring range. Valproic acid is extensively metabolised by microsomal glucuronide conjugation, mitochondrial beta-oxidation and cytochrome P450-dependent omega-, (omega-1)- and (omega-2)-oxidation. The elimination half-life is in the order of 9 to 18 hours, but shorter values (5 to 12 hours) are observed in patients comedicated with enzyme-inducing agents such as phenytoin, carbamazepine and barbiturates. Valproate itself is devoid of enzyme-inducing properties, but it has the potential of inhibiting drug metabolism and can increase by this mechanism the plasma concentrations of certain coadministered drugs, including phenobarbital (phenobarbitone), lamotrigine and zidovudine. Valproate is a broad spectrum AED, being effective against all seizure types. In patients with newly diagnosed partial seizures (with or without secondary generalisation) and/or primarily generalised tonic-clonic seizures, the efficacy of valproate is comparable to that of phenytoin, carbamazepine and phenobarbital, although in most comparative trials the tolerability of phenobarbital was inferior to that of the other drugs. Valproate is generally regarded as a first-choice agent for most forms of idiopathic and symptomatic generalised epilepsies. Many of these syndromes are associated with multiple seizure types, including tonic-clonic, myoclonic and absence seizures, and prescription of a broad-spectrum drug such as valproate has clear advantages in this situation. A number of reports have also suggested that intravenous valproate could be of value in the treatment of convulsive and nonconvulsive status epilepticus, but further studies are required to establish in more detail the role of the drug in this indication. The most commonly reported adverse effects of valproate include gastrointestinal disturbances, tremor and bodyweight gain. Other notable adverse effects include encephalopathy symptoms (at times associated with hyperammonaemia), platelet disorders, pancreatitis, liver toxicity (with an overall incidence of 1 in 20,000, but a frequency as high as 1 in 600 or 1 in 800 in high-risk groups such as infants below 2 years of age receiving anticonvulsant polytherapy) and teratogenicity, including a 1 to 3% risk of neural tube defects. Some studies have also suggested that menstrual disorders and certain clinical, ultrasound or endocrine manifestations of reproductive system disorders, including polycystic ovary syndrome, may be more common in women treated with valproate than in those treated with other AEDs. However, the precise relevance of the latter findings remains to be evaluated in large, prospective, randomised studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action.

              Valproate is currently one of the major antiepileptic drugs with efficacy for the treatment of both generalized and partial seizures in adults and children. Furthermore, the drug is increasingly used for therapy of bipolar and schizoaffective disorders, neuropathic pain and for prophylactic treatment of migraine. These various therapeutic effects are reflected in preclinical models, including a variety of animal models of seizures or epilepsy. The incidence of toxicity associated with the clinical use of valproate is low, but two rare toxic effects, idiosyncratic fatal hepatotoxicity and teratogenicity, necessitate precautions in risk patient populations. Studies from animal models on structure-relationships indicate that the mechanisms leading to hepatotoxicity and teratogenicity are distinct and also differ from the mechanisms of anticonvulsant action of valproate. Because of its wide spectrum of anticonvulsant activity against different seizure types, it has repeatedly been suggested that valproate acts through a combination of several mechanisms. As shown in this review, there is substantial evidence that valproate increases GABA synthesis and release and thereby potentiates GABAergic functions in some specific brain regions, such as substantia nigra, thought to be involved in the control of seizure generation and propagation. Furthermore, valproate seems to reduce the release of the epileptogenic amino acid gamma-hydroxybutyric acid and to attenuate neuronal excitation induced by NMDA-type glutamate receptors. In addition to effects on amino acidergic neurotransmission, valproate exerts direct effects on excitable membranes, although the importance of this action is equivocal. Microdialysis data suggest that valproate alters dopaminergic and serotonergic functions. Valproate is metabolized to several pharmacologically active metabolites, but because of the low plasma and brain concentrations of these compounds it is not likely that they contribute significantly to the anticonvulsant and toxic effects of treatment with the parent drug. By the experimental observations summarized in this review, most clinical effects of valproate can be explained, although much remains to be learned at a number of different levels of valproate's mechanisms of action.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 September 2013
                : 8
                : 9
                : e73505
                Affiliations
                [1 ]Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
                [2 ]The Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
                [3 ]Department of Translational Neurosciences, University of Antwerp, Belgium
                Kaohsiung Chang Gung Memorial Hospital, Taiwan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TJO MJM. Performed the experiments: JE KLP LvR SD. Analyzed the data: JE KLP TJO MJM. Wrote the paper: JE KLP TJO MJM. Reviewed and edited manuscript: JE KLP LvR SD TJO MJM.

                Article
                PONE-D-12-39815
                10.1371/journal.pone.0073505
                3767750
                24039965
                de88e5b5-8f72-4bdc-93c8-4894af7b9e54
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 December 2012
                : 23 July 2013
                Page count
                Pages: 6
                Funding
                This work was funded by project grant support from the National Health and Medical Research Council (NHMRC grant #568729) of Australia to MJM and TJO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript” to the Financial Disclosure.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article