6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cabozantinib in the treatment of advanced renal cell carcinoma: design, development, and potential place in the therapy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The treatment of metastatic renal cell carcinoma (mRCC) has markedly improved over the last few years with the introduction of several targeted agents in clinical practice. Nevertheless, either primary or secondary resistance to inhibition of VEGF and mTOR pathways has limited the clinical benefit of these systemic treatments. Recently, a better understanding of the involvement of MET and its ligand HGF in many biological processes made this signaling pathway an attractive therapeutic target in oncology, particularly in mRCC. Herein, we review the development of cabozantinib, a recently approved inhibitor of multiple tyrosine kinase receptors, including MET, VEGFRs, and AXL, which has proven to increase progression-free survival and overall survival when compared to everolimus in mRCC patients who had progressed after VEGFR-targeted therapy. Finally, we discuss the potential role of cabozantinib within the current treatment landscape for mRCC.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.

          The signaling pathway of the receptor tyrosine kinase MET and its ligand hepatocyte growth factor (HGF) is important for cell growth, survival, and motility and is functionally linked to the signaling pathway of VEGF, which is widely recognized as a key effector in angiogenesis and cancer progression. Dysregulation of the MET/VEGF axis is found in a number of human malignancies and has been associated with tumorigenesis. Cabozantinib (XL184) is a small-molecule kinase inhibitor with potent activity toward MET and VEGF receptor 2 (VEGFR2), as well as a number of other receptor tyrosine kinases that have also been implicated in tumor pathobiology, including RET, KIT, AXL, and FLT3. Treatment with cabozantinib inhibited MET and VEGFR2 phosphorylation in vitro and in tumor models in vivo and led to significant reductions in cell invasion in vitro. In mouse models, cabozantinib dramatically altered tumor pathology, resulting in decreased tumor and endothelial cell proliferation coupled with increased apoptosis and dose-dependent inhibition of tumor growth in breast, lung, and glioma tumor models. Importantly, treatment with cabozantinib did not increase lung tumor burden in an experimental model of metastasis, which has been observed with inhibitors of VEGF signaling that do not target MET. Collectively, these data suggest that cabozantinib is a promising agent for inhibiting tumor angiogenesis and metastasis in cancers with dysregulated MET and VEGFR signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel therapeutic inhibitors of the c-Met signaling pathway in cancer.

            A wide variety of human malignancies exhibit sustained c-Met stimulation, overexpression, or mutation, including carcinomas of the breast, liver, lung, ovary, kidney, and thyroid. Notably, activating mutations in c-Met have been positively identified in patients with a particular hereditary form of papillary renal cancer, directly implicating c-Met in human tumorigenesis. Aberrant signaling of the c-Met signaling pathway due to dysregulation of the c-Met receptor or overexpression of its ligand, hepatocyte growth factor (HGF), has been associated with an aggressive phenotype. Extensive evidence that c-Met signaling is involved in the progression and spread of several cancers and an enhanced understanding of its role in disease have generated considerable interest in c-Met and HGF as major targets in cancer drug development. This has led to the development of a variety of c-Met pathway antagonists with potential clinical applications. The three main approaches of pathway-selective anticancer drug development have included antagonism of ligand/receptor interaction, inhibition of the tyrosine kinase catalytic activity, and blockade of the receptor/effector interaction. Several c-Met antagonists are now under clinical investigation. Preliminary clinical results of several of these agents, including both monoclonal antibodies and small-molecule tyrosine kinase inhibitors, have been encouraging. Several multitargeted therapies have also been under investigation in the clinic and have demonstrated promise, particularly with regard to tyrosine kinase inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer.

              XL184 (cabozantinib) is a potent inhibitor of MET, vascular endothelial growth factor receptor 2 (VEGFR2), and RET, with robust antiangiogenic, antitumor, and anti-invasive effects in preclinical models. Early observations of clinical benefit in a phase I study of cabozantinib, which included patients with medullary thyroid cancer (MTC), led to expansion of an MTC-enriched cohort, which is the focus of this article. A phase I dose-escalation study of oral cabozantinib was conducted in patients with advanced solid tumors. Primary end points included evaluation of safety, pharmacokinetics, and maximum-tolerated dose (MTD) determination. Additional end points included RECIST (Response Evaluation Criteria in Solid Tumors) response, pharmacodynamics, RET mutational status, and biomarker analyses. Eighty-five patients were enrolled, including 37 with MTC. The MTD was 175 mg daily. Dose-limiting toxicities were grade 3 palmar plantar erythrodysesthesia (PPE), mucositis, and AST, ALT, and lipase elevations and grade 2 mucositis that resulted in dose interruption and reduction. Ten (29%) of 35 patients with MTC with measurable disease had a confirmed partial response. Overall, 18 patients experienced tumor shrinkage of 30% or more, including 17 (49%) of 35 patients with MTC with measurable disease. Additionally, 15 (41%) of 37 patients with MTC had stable disease (SD) for at least 6 months, resulting in SD for 6 months or longer or confirmed partial response in 68% of patients with MTC. Cabozantinib has an acceptable safety profile and is active in MTC. Cabozantinib may provide clinical benefit by simultaneously targeting multiple pathways of importance in MTC, including MET, VEGFR2, and RET. A global phase III pivotal study in MTC is ongoing (ClinicalTrials.gov number NCT00215605).
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                05 July 2016
                : 10
                : 2167-2172
                Affiliations
                Department of Medical Oncology, Genitourinary Cancer Unit, Fondazione IRCCS Istituto nazionale Tumori, Milan, Italy
                Author notes
                Correspondence: Giuseppe Procopio, Department of Medical Oncology Unit 1, Genitourinary Cancer Section, Fondazione IRCCS Istituto Nazionale Tumori, Via G Venezian 1, 20133 Milano, Italy, Tel +39 02 2390 4450, Email giuseppe.procopio@ 123456istitutotumori.mi.it
                Article
                dddt-10-2167
                10.2147/DDDT.S104225
                4939993
                27462141
                © 2016 Grassi et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article