7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The effect of beta blocker withdrawal on adenosine myocardial perfusion imaging

      research-article
      , , MD, , , MD, PhD, , MD, PhD
      Journal of Nuclear Cardiology
      Springer US
      Myocardial perfusion imaging, beta blocker, adenosine, PET

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The effect of beta blockers on myocardial blood flow (MBF) under vasodilators has been studied in several SPECT and PET myocardial perfusion imaging (MPI) studies with divergent results. The present study evaluated the effect of a beta blocker withdrawal on quantitative adenosine MBF and on MPI results.

          Methods

          Twenty patients with beta blockers and CAD history were studied with quantitative adenosine N-13 ammonia PET. The first study was performed under complete medication and the second after beta blocker withdrawal. The PET studies were independently read with respect to MPI result and clinical decision making.

          Results

          Global MBF showed an increase from 180.2 ± 59.9 to 193.6 ± 60.8 mL·minute −1/100 g ( P = .02) after beta blocker withdrawal. The segmental perfusion values were closely correlated ( R 2 = 0.82) over the entire range of perfusion values. An essentially different interpretation after beta blocker discontinuation was found in two cases (10%).

          Conclusion

          A beta blocker withdrawal induces an increase in adenosine MBF. In the majority of cases, MPI interpretation and decision making are independent of beta blocker intake. If a temporary beta blocker withdrawal before MPI is not possible or was not realized by the patient, it is appropriate to perform adenosine stress testing without loss of the essential MPI result.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of coronary blood flow during exercise.

          Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of alpha- and ss-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A(2). During exercise, ss-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sample size estimation: how many individuals should be studied?

            John Eng (2003)
            The number of individuals to include in a research study, the sample size of the study, is an important consideration in the design of many clinical studies. This article reviews the basic factors that determine an appropriate sample size and provides methods for its calculation in some simple, yet common, cases. Sample size is closely tied to statistical power, which is the ability of a study to enable detection of a statistically significant difference when there truly is one. A trade-off exists between a feasible sample size and adequate statistical power. Strategies for reducing the necessary sample size while maintaining a reasonable power will also be discussed. Copyright RSNA, 2003
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology.

              The European procedural guidelines for radionuclide imaging of myocardial perfusion and viability are presented in 13 sections covering patient information, radiopharmaceuticals, injected activities and dosimetry, stress tests, imaging protocols and acquisition, quality control and reconstruction methods, gated studies and attenuation-scatter compensation, data analysis, reports and image display, and positron emission tomography. If the specific recommendations given could not be based on evidence from original, scientific studies, we tried to express this state-of-art. The guidelines are designed to assist in the practice of performing, interpreting and reporting myocardial perfusion SPET. The guidelines do not discuss clinical indications, benefits or drawbacks of radionuclide myocardial imaging compared to non-nuclear techniques, nor do they cover cost benefit or cost effectiveness.
                Bookmark

                Author and article information

                Contributors
                choffmeister@hdz-nrw.de
                rpreuss@hdz-nrw.de
                rweise@hdz-nrw.de
                wburchert@hdz-nrw.de
                olindner@hdz-nrw.de
                Journal
                J Nucl Cardiol
                J Nucl Cardiol
                Journal of Nuclear Cardiology
                Springer US (Boston )
                1071-3581
                1532-6551
                15 August 2014
                15 August 2014
                2014
                : 21
                : 6
                : 1223-1229
                Affiliations
                [ ]Diabetes Center, Heart and Diabetes Center North Rhine-Westphalia, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
                [ ]Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine-Westphalia, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
                Article
                9952
                10.1007/s12350-014-9952-y
                4228113
                25124825
                de90c109-b18f-4b8e-88e8-39e87f689b70
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 6 May 2014
                : 30 June 2014
                Categories
                Original Article
                Custom metadata
                © American Society of Nuclear Cardiology 2014

                Cardiovascular Medicine
                myocardial perfusion imaging,beta blocker,adenosine,pet
                Cardiovascular Medicine
                myocardial perfusion imaging, beta blocker, adenosine, pet

                Comments

                Comment on this article