4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was carried out to explore the roles of circular RNAs (circRNAs) in nucleus pulposus (NP) tissues in intervertebral disc degeneration (IDD). Differentially expressed circRNAs in IDD and normal NP tissues were identified based on the results of microarray analysis. Bioinformatics techniques were employed to predict the direct interactions of selected circRNAs, microRNAs (miR), and mRNAs. CircRNA_104670 was selected as the target circRNA due to its large multiplier expression in IDD tissues. After luciferase reporter and EGFP/RFP reporter assays, we confirmed that circRNA_104670 directly bound to miR-17-3p, while MMP-2 was the direct target of miR-17-3p. The receiver-operating characteristic (ROC) curve showed that circRNA_104670 and miR-17-3p had good diagnostic significance for IDD (AUC circRNA_104670 = 0.96; AUC miRNA-17-3p = 0.91). A significant correlation was detected between the Pfirrmann grade and expression of circRNA_104670 ( r = 0.63; p = 0.00) and miR-17-3p ( r = −0.62; p = 0.00). Flow-cytometric analysis and the MTT assay showed that interfering with circRNA_104670 using small interfering RNA (siRNA) inhibited NP cell apoptosis ( p < 0.01), and this inhibition was reduced by interfering with miR-17-3p. Interfering with circRNA_104670 suppressed MMP-2 expression and increased extracellular matrix (ECM) formation, which were also reduced by interfering with miR-17-3p. Finally, an MRI evaluation showed that circRNA_104670 inhibition mice had a lower IDD grade compared with control mice ( p < 0.01), whereas circRNA_104670 and miRNA-17-3p inhibition mice had a higher IDD grade compared with circRNA_104670 inhibition mice ( p < 0.05). CircRNA_104670 is highly expressed in the NP tissues of IDD and acts as a ceRNA during NP degradation.

          Spinal disease: A roundabout route to disc degeneration

          ‘RNA sponges’ may provoke lower back pain by soaking up regulatory RNAs that normally protect the protein infrastructure surrounding cells in intervertebral discs. Many people suffer from lower back pain arising from disc degeneration (IDD). A team led by Fei-Zou and Jian-Yuan Jiang at Fudan University, Shanghai, China set out to identify molecular mechanisms that might contribute to IDD. They focused on circular RNAs, non-protein coding RNAs that have been linked to a variety of diseases. The researchers learned that IDD is associated with strongly elevated expression of a circular RNA that acts as an ‘RNA sponge’, binding to and thereby inactivating other RNA molecules. This inactivation ultimately results in the excessive production of an enzyme that can damage the protein matrix that supports cells within spinal discs, potentially setting up the conditions for IDD.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.

          Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration.

            An in vivo study to radiographically and histologically assess a new method of induction of disc degeneration. OBJECTIVE.: To establish a reproducible rabbit model of disc degeneration by puncturing the anulus with needles of defined gauges and to compare it to the classic stab model. New treatment approaches to disc degeneration are of great interest. Although animal models for disc degenerative disease exist, the quantitative measurement of disease progression remains difficult. A reproducible, progressive disc degeneration model, which can be induced in a reasonable time frame, is essential for development of new therapeutic interventions. The classic anular stab model and the new needle puncture model were used in the rabbit. For the needle puncture model, 3 different gauges of needle (16G, 18G, and 21G) were used to induce an injury to the disc to a depth of 5 mm. Radiographic and histologic analyses were performed; magnetic resonance images were also assessed in the needle puncture model. Significant disc space narrowing was observed as early as 2 weeks after stabbing in the classic stab model; there was no further narrowing of the disc space. In the needle puncture model, all needle sizes tested induced a slower and more progressive decrease in disc height than in the classic stab model. The magnetic resonance imaging supported the results of disc height data. The needle puncture approach, using 16G to 21G needles, resulted in a reproducible decrease of disc height and magnetic resonance imaging grade. The ease of the procedure and transfer of the methodology will benefit researchers studying disc degeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noncoding RNA in development.

              Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
                Bookmark

                Author and article information

                Contributors
                +86-021-52887126 , zillion-faculty@126.com
                jianyuanjiang@sina.com , jjy@fudanspine.com
                Journal
                Exp Mol Med
                Exp. Mol. Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                6 August 2018
                6 August 2018
                August 2018
                : 50
                : 8
                Affiliations
                [1 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Department of Orthopaedics, Huashan Hospital, , Fudan University, ; Shanghai, China 200040
                [2 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, , Fudan University, ; Shanghai, China 200032
                [3 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Department of Anesthesiology, Huashan Hospital, , Fudan University, ; Shanghai, China 200040
                Article
                125
                10.1038/s12276-018-0125-y
                6082839
                30089772
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003399, Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission);
                Award ID: 16411964100
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81472036
                Award Recipient :
                Funded by: National Natural Science Foundation of China, NSFC (81601914, 81501909
                Funded by: National Key Research and Development Plan(2016YFC1201802)
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Molecular medicine

                Comments

                Comment on this article