65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets ( WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.

          Author Summary

          Epstein-Barr virus (EBV) is associated with numerous cancers. The ability of the virus to infect B-cells and convert them from short-lived into immortal cells is the key to its cancer-promoting properties. A small number of EBV transcription factors are required for immortalization and act in concert to drive cell growth by deregulating the expression of cellular genes through largely unknown mechanisms. We have demonstrated that four of these key transcription factors function cooperatively by targeting common genes via long-range enhancer elements and modulating their looping interactions with gene promoters. Specifically we show that gene repression by the EBV EBNA 3 family of proteins can be mediated through the modulation of enhancer-promoter looping. Our results also reveal that different subsets of EBNA 3 proteins are bound at different genes and that this differential binding can vary in lymphoma cells compared to cells immortalized in culture, indicating that cell-background-specific gene regulation may be important in lymphoma development. Our results demonstrate how cellular genes can be deregulated by an oncogenic virus through modulation of enhancer-promoter looping with the specificity of binding by viral transcription factors controlling cellular reprogramming in a gene and cell-type specific manner.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          A unique chromatin signature uncovers early developmental enhancers in humans.

          Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling.

            Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk approximately 1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC.

              The 8q24 gene desert contains risk loci for multiple epithelial cancers, including colon, breast, and prostate. Recent evidence suggests these risk loci contain enhancers. In this study, data are presented showing that each risk locus bears epigenetic marks consistent with enhancer elements and forms a long-range chromatin loop with the MYC proto-oncogene located several hundred kilobases telomeric and that these interactions are tissue-specific. We therefore propose that the 8q24 risk loci operate through a common mechanism-as tissue-specific enhancers of MYC.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2013
                September 2013
                12 September 2013
                : 9
                : 9
                : e1003636
                Affiliations
                [1 ]School of Life Sciences, John Maynard-Smith Building, University of Sussex, Falmer, Brighton, United Kingdom
                [2 ]MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, Paul O'Gorman Building, University College London, London, United Kingdom
                [3 ]Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [4 ]Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
                Wistar Institute, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJW MJM CDW. Performed the experiments: MJM CDW OO TJC HMW RDP. Analyzed the data: AK RGJ AA MJM MJW. Contributed reagents/materials/analysis tools: MLHH BK. Wrote the paper: MJW RGJ.

                [¤a]

                Current address: School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.

                [¤b]

                Current address: London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom.

                Article
                PPATHOGENS-D-13-00786
                10.1371/journal.ppat.1003636
                3771879
                24068937
                de942800-c4ea-4d64-a0af-118964005b62
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 March 2013
                : 3 August 2013
                Page count
                Pages: 24
                Funding
                This work was supported by grants from the Wellcome Trust (088140) and Leukaemia Lymphoma Research (12035) to MJW. MJM was supported by a PhD studentship from the Biotechnology and Biological Sciences Research Council. RDP was funded by PhD studentship from the University of Sussex. RGJ was supported by a Medical Research Council Career Development Award and ASK by an MRC Centre grant to the MRC Centre for Medical Molecular Virology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article