43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protegrin peptides are potent antimicrobial agents believed to act against a variety of pathogens by forming nonselective transmembrane pores in the bacterial cell membrane. We have employed 3D Poisson-Nernst-Planck (PNP) calculations to determine the steady-state ion conduction characteristics of such pores at applied voltages in the range of −100 to +100 mV in 0.1 M KCl bath solutions. We have tested a variety of pore structures extracted from molecular dynamics (MD) simulations based on an experimentally proposed octomeric pore structure. The computed single-channel conductance values were in the range of 290–680 pS. Better agreement with the experimental range of 40–360 pS was obtained using structures from the last 40 ns of the MD simulation, where conductance values range from 280 to 430 pS. We observed no significant variation of the conductance with applied voltage in any of the structures that we tested, suggesting that the voltage dependence observed experimentally is a result of voltage-dependent channel formation rather than an inherent feature of the open pore structure. We have found the pore to be highly selective for anions, with anionic to cationic current ratios (I Cl−/I K+) on the order of 10 3. This is consistent with the highly cationic nature of the pore but surprisingly in disagreement with the experimental finding of only slight anionic selectivity. We have additionally tested the sensitivity of our PNP model to several parameters and found the ion diffusion coefficients to have a significant influence on conductance characteristics. The best agreement with experimental data was obtained using a diffusion coefficient for each ion set to 10% of the bulk literature value everywhere inside the channel, a scaling used by several other studies employing PNP calculations. Overall, this work presents a useful link between previous work focused on the structure of protegrin pores and experimental efforts aimed at investigating their conductance characteristics.

          Author Summary

          Protegrins are small peptides with strong antimicrobial properties, believed to kill bacteria primarily by forming nonselective pores in the bacterial membrane. This nonspecific and highly effective mechanism of action has created significant excitement about the use of protegrins as therapeutic antibiotics. However, a lack of understanding of the fundamental processes that lead to pore formation and bacterial death has proven to be a major bottleneck in the rational design of protegrin-based antibiotics. In the present work, we have carried out computational investigations of the diffusion of ions through a protegrin pore. We have thereby provided a connection between previous experimental and simulation work aimed at elucidating the structure of the protegrin pore and earlier experimental work investigating the ion transport characteristics of protegrin pores. The ion diffusion characteristics of protegrin pores are likely to be important in their ability to kill bacteria, as the uncontrolled flow of ions through a bacterial membrane will result in membrane depolarization and the loss of vital membrane functions. The present work thus represents an important first step in modeling and quantifying the timeline of events that lead to the killing of bacteria by protegrins. Furthermore, the computational tools that we have presented herein are easily extendible to similar systems, in particular other antimicrobial peptides.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparison of simple potential functions for simulating liquid water

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peptide antibiotics.

            R. Hancock (1997)
            The era of the "classical antibiotic" may be over. The emergence of resistance has seen to that. Yet no truly novel class of antibacterial agent has come on the market in the past 30 years. Currently there is great interest in peptide antibiotics, especially the cationic peptides. Thousands of such molecules have been synthesised and just a few are entering clinical trials. Because they kill bacteria quickly by the physical disruption of cell membranes, peptide antibiotics may not face the rapid emergence of resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.

              Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the interaction, with model membranes and the cytoplasmic membrane of Escherichia coli, of 12 peptides representing all 4 structural classes of antimicrobial peptides. Planar lipid bilayer studies indicated that there was considerable variance in the interactions of the peptides with model phospholipid membranes, but generally both high concentrations of peptide and high transmembrane voltages (usually -180 mV) were required to observe conductance events (channels). The channels observed for most peptides varied widely in magnitude and duration. An assay was developed to measure the interaction with the Escherichia coli cytoplasmic membrane employing the membrane potential sensitive dye 3,5-dipropylthiacarbocyanine in the outer membrane barrier-defective E. coli strain DC2. It was demonstrated that individual peptides varied widely in their ability to depolarize the cytoplasmic membrane potential of E. coli, with certain peptides such as the loop peptide bactenecin and the alpha-helical peptide CP26 being unable to cause depolarization at the minimal inhibitory concentration (MIC), and others like gramicidin S causing maximal depolarization below the MIC. We discuss the mechanism of interaction with the cytoplasmic membrane in terms of the model of Matsuzaki et al. [(1998) Biochemistry 37, 15144-15153] and the possibility that the cytoplasmic membrane is not the target for some or even most cationic antimicrobial peptides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2009
                January 2009
                30 January 2009
                : 5
                : 1
                : e1000277
                Affiliations
                [1]Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
                University of Houston, United States of America
                Author notes

                Conceived and designed the experiments: DSB HTD YNK. Performed the experiments: DSB ASA. Analyzed the data: DSB ASA YNK. Wrote the paper: DSB YNK.

                Article
                08-PLCB-RA-0699R2
                10.1371/journal.pcbi.1000277
                2614469
                19180178
                de9a8865-1b52-4703-b6ed-dc6a70bfaa7f
                Bolintineanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 August 2008
                : 16 December 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Biophysics/Theory and Simulation
                Computational Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article