Location extraction, also called “toponym extraction,” is a field covering geoparsing, extracting spatial representations from location mentions in text, and geotagging, assigning spatial coordinates to content items. This article evaluates five “best-of-class” location extraction algorithms. We develop a geoparsing algorithm using an OpenStreetMap database, and a geotagging algorithm using a language model constructed from social media tags and multiple gazetteers. Third-party work evaluated includes a DBpedia-based entity recognition and disambiguation approach, a named entity recognition and Geonames gazetteer approach, and a Google Geocoder API approach. We perform two quantitative benchmark evaluations, one geoparsing tweets and one geotagging Flickr posts, to compare all approaches. We also perform a qualitative evaluation recalling top N location mentions from tweets during major news events. The OpenStreetMap approach was best (F1 0.90+) for geoparsing English, and the language model approach was best (F1 0.66) for Turkish. The language model was best (F1@1km 0.49) for the geotagging evaluation. The map database was best (R@20 0.60+) in the qualitative evaluation. We report on strengths, weaknesses, and a detailed failure analysis for the approaches and suggest concrete areas for further research.