86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral and host proteins involved in picornavirus life cycle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Scavenger receptor B2 is a cellular receptor for enterovirus 71.

          Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AU binding proteins recruit the exosome to degrade ARE-containing mRNAs.

            Inherently unstable mammalian mRNAs contain AU-rich elements (AREs) within their 3' untranslated regions. Although found 15 years ago, the mechanism by which AREs dictate rapid mRNA decay is not clear. In yeast, 3'-to-5' mRNA degradation is mediated by the exosome, a multisubunit particle. We have purified and characterized the human exosome by mass spectrometry and found its composition to be similar to its yeast counterpart. Using a cell-free RNA decay system, we demonstrate that the mammalian exosome is required for rapid degradation of ARE-containing RNAs but not for poly(A) shortening. The mammalian exosome does not recognize ARE-containing RNAs on its own. ARE recognition requires certain ARE binding proteins that can interact with the exosome and recruit it to unstable RNAs, thereby promoting their rapid degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71.

              Enterovirus 71 (EV71) is a major causative agent of hand, foot and mouth disease (HFMD), a common febrile disease occurring mainly in young children. Although clinical manifestations of HFMD are usually mild and self limiting, a severe EV71 outbreak can lead to a diverse array of neurological diseases. Identification of the specific cellular receptors is crucial for elucidating the mechanism of early virus-host interactions and the pathogenesis of enteroviruses. Here we identify human P-selectin glycoprotein ligand-1 (PSGL-1; CD162), a sialomucin membrane protein expressed on leukocytes that has a major role in early stages of inflammation, as a functional receptor for EV71 using an expression cloning method by panning. The N-terminal region of PSGL-1 binds specifically to EV71. Stable PSGL-1 expression allowed EV71 entry and replication, and development of cytopathic effects in nonsusceptible mouse L929 cells. Five out of eight EV71 strains bound soluble PSGL-1 and used intact PSGL-1 as the primary receptor for infection of Jurkat T cells. Three other EV71 strains did not use PSGL-1, suggesting the presence of strain-specific replication of EV71 in leukocytes. EV71 replicated in nonleukocyte cell lines in a PSGL-1-independent manner, indicating the presence of alternative receptor(s) for EV71. The identification of PSGL-1 as a receptor for EV71 sheds new light on a role for PSGL-1-positive leukocytes in cell tropism and pathogenesis during the course of HFMD and other EV71-mediated diseases.
                Bookmark

                Author and article information

                Journal
                J Biomed Sci
                Journal of Biomedical Science
                BioMed Central
                1021-7770
                1423-0127
                2009
                20 November 2009
                : 16
                : 1
                : 103
                Affiliations
                [1 ]Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan
                [2 ]Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
                [3 ]Graduate Program in Biomedical Science, Chang Gung University, Tao-Yuan, Taiwan
                [4 ]Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
                Article
                1423-0127-16-103
                10.1186/1423-0127-16-103
                2785775
                19925687
                dea52977-69b2-48ed-8371-3fa33f03d6be
                Copyright ©2009 Lin et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 June 2009
                : 20 November 2009
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article