8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Outcome and features of acute kidney injury complicating hypoxic hepatitis at the medical intensive care unit

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hypoxic hepatitis (HH) is a frequent and potentially life-threatening event typically occurring in critically ill patients as a consequence of hemodynamic impairment. While acute kidney injury (AKI) has been well described in patients with acute liver failure, incidence and outcome of AKI accompanying HH are unclear. The aim of this study was to assess incidence, clinical implications and outcome of AKI and renal replacement therapy (RRT) in critically ill patients with HH.

          Methods

          A total of 1948 consecutive critically ill admissions were studied at the Medical University of Vienna. Laboratory and clinical parameters as well as the presence of HH and AKI were assessed on a daily basis. Outcome, renal recovery and length of stay were assessed and documented, and patients were followed for 1 year.

          Results

          A total of 295 admissions (15 %) developed HH. Main precipitators were cardiogenic (44 %) and septic shock (36 %). Occurrence of HH was significantly associated with AKI [OR 4.50 (95 % CI 3.30–6.12)] and necessity of renal replacement therapy [RRT; OR 3.36 (95 % CI 2.58–4.37)], p < 0.001 for both. Two hundred forty admissions with HH (81 %) developed AKI, 159 of whom (66 %) had AKI stage 3. Both HH and AKI were significantly linked to mortality. AKI stage 3, international normalized ratio (INR, during HH) and the presence of septic shock were identified as independent predictors of 28-day mortality in admissions with HH, whereas RRT was identified as an independent protective factor. There was a synergistic effect of HH and AKI on length of stay at the ICU. Of all HH survivors treated with RRT, 71 % showed renal recovery during follow-up.

          Conclusion

          HH is frequently complicated by occurrence of AKI. Severity of HH, AKI stage and the presence of septic shock seem to contribute to poor outcome in these patients. Initiation of RRT in HH with AKI may enable renal recovery and should not be withheld in medical ICU patients.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13613-016-0162-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found

          KDIGO Clinical Practice Guidelines for Acute Kidney Injury

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.

            To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. The 13,152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Vital status at hospital discharge. The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P = .883 and P = .104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

              Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Design Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. Methods We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Results Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). Conclusion There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
                Bookmark

                Author and article information

                Contributors
                +49/40/7410/20251 , a.drolz@uke.de
                t.horvatits@uke.de
                k.roedl@uke.de
                k.rutter@uke.de
                katharina.staufer@meduniwien.ac.at
                dominikhaider2003@yahoo.de
                christian.zauner@meduniwien.ac.at
                gottfried.heinz@meduniwien.ac.at
                peter.schellongowski@meduniwien.ac.at
                s.kluge@uke.de
                michael.trauner@meduniwien.ac.at
                v.fuhrmann@uke.de
                Journal
                Ann Intensive Care
                Ann Intensive Care
                Annals of Intensive Care
                Springer Paris (Paris )
                2110-5820
                8 July 2016
                8 July 2016
                2016
                : 6
                : 61
                Affiliations
                [ ]Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
                [ ]Department of Intensive Care Medicine, University Medical Center, Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
                [ ]Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
                [ ]Division of Nephrology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
                [ ]Department of Emergency Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
                [ ]Intensive Care Unit 13H3, Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
                [ ]Intensive Care Unit 13I2, Division of Oncology and Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
                Article
                162
                10.1186/s13613-016-0162-4
                4938842
                27392655
                dea6c5a4-e313-4b24-9d18-971fba93184c
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 25 February 2016
                : 21 June 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Emergency medicine & Trauma
                hypoxic hepatitis,acute kidney injury,renal replacement therapy,mortality

                Comments

                Comment on this article