14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in the cystic fibrosis transmembrane conductance regulator ( CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 ( SLC9A3) gene. SLC9A3 is a Na +/H + exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3 -/- mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3 -/- mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3 –/– epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations.

          Author summary

          Cystic fibrosis (CF) is the most common inherited life-threatening disease in Caucasians. The most well-known cause of CF is a genetic defect in CFTR, an apical membrane chloride and bicarbonate channel. The symptoms of CF include defects in the respiratory, digestive, and male reproductive systems. Most male patients with CF are infertile due to congenital bilateral absence of the vas deferens (CBAVD), which leads to obstructive azoospermia. Nevertheless, Taiwanese patients with CBAVD do not carry the common mutations of CFTR found in Caucasians. We have identified a potential candidate, SLC9A3, of which a single copy is lost in Taiwanese patients with CBAVD. In addition to the previously reported role of SLC9A3 in the digestive system and efferent ductules, we now report that the SLC9A3 deficiency causes obstructive azoospermia and impairs the epithelial structure of the reproductive tract. Loss of SLC9A3 also leads to dramatic reduced expression of CFTR in the reproductive tract. We suggest that the interplay between SLC9A3 and CFTR is responsible for CF-related infertility. Thus, we have characterized a potential critical player in the pathogenesis of CBAVD and provide a new diagnostic candidate for Asian patients with CBAVD.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger.

          NHE3 is one of five plasma membrane Na+/H+ exchangers and is encoded by the mouse gene Slc9a3. It is expressed on apical membranes of renal proximal tubule and intestinal epithelial cells and is thought to play a major role in NaCl and HCO3- absorption. As the distribution of NHE3 overlaps with that of the NHE2 isoform in kidney and intestine, the function and relative importance of NHE3 in vivo is unclear. To analyse its physiological functions, we generated mice lacking NHE3 function. Homozygous mutant (Slc9a3-/-) mice survive, but they have slight diarrhoea and blood analysis revealed that they are mildly acidotic. HCO3- and fluid absorption are sharply reduced in proximal convoluted tubules, blood pressure is reduced and there is a severe absorptive defect in the intestine. Thus, compensatory mechanisms must limit gross perturbations of electrolyte and acid-base balance. Plasma aldosterone is increased in NHE3-deficient mice, and expression of both renin and the AE1 (Slc4a1) Cl-/HCO3- exchanger mRNAs are induced in kidney. In the colon, epithelial Na+ channel activity is increased and colonic H+,K+-ATPase mRNA is massively induced. These data show that NHE3 is the major absorptive Na+/H+ exchanger in kidney and intestine, and that lack of the exchanger impairs acid-base balance and Na+-fluid volume homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens.

            Congenital bilateral absence of the vas deferens (CBAVD) is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified. The molecular basis of CBAVD is not completely understood. Although patients with cystic fibrosis have mutations in both copies of the CFTR gene, most patients with CBAVD have mutations in only one copy of the gene. To investigate CBAVD at the molecular level, we have characterized the mutations in the CFTR gene in 102 patients with this condition. None had clinical manifestations of cystic fibrosis. We also analyzed a DNA variant (the 5T allele) in a noncoding region of CFTR that causes reduced levels of the normal CFTR protein. Parents of patients with cystic fibrosis, patients with types of infertility other than CBAVD, and normal subjects were studied as controls. Nineteen of the 102 patients with CBAVD had mutations in both copies of the CFTR gene, and none of them had the 5T allele. Fifty-four patients had a mutation in one copy of CFTR, and 34 of them (63 percent) had the 5T allele in the other CFTR gene. In 29 patients no CFTR mutations were found, but 7 of them (24 percent) had the 5T allele. In contrast, the frequency of this allele in the general population was about 5 percent. Most patients with CBAVD have mutations in the CFTR gene. The combination of the 5T allele in one copy of the CFTR gene with a cystic fibrosis mutation in the other copy is the most common cause of CBAVD: The 5T allele mutation has a wide range of clinical presentations, occurring in patients with CBAVD or moderate forms of cystic fibrosis and in fertile men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis

              The identification of small molecules that target specific CFTR variants has ushered in a new era of treatment for cystic fibrosis (CF), yet optimal, individualized treatment of CF will require identification and targeting of disease modifiers. Here we use genome-wide association analysis to identify genetic modifiers of CF lung disease, the primary cause of mortality. Meta-analysis of 6,365 CF patients identifies five loci that display significant association with variation in lung disease. Regions on chr3q29 (MUC4/MUC20; P=3.3 × 10−11), chr5p15.3 (SLC9A3; P=6.8 × 10−12), chr6p21.3 (HLA Class II; P=1.2 × 10−8) and chrXq22-q23 (AGTR2/SLC6A14; P=1.8 × 10−9) contain genes of high biological relevance to CF pathophysiology. The fifth locus, on chr11p12-p13 (EHF/APIP; P=1.9 × 10−10), was previously shown to be associated with lung disease. These results provide new insights into potential targets for modulating lung disease severity in CF.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                6 April 2017
                April 2017
                : 13
                : 4
                : e1006715
                Affiliations
                [1 ]Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
                [2 ]Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
                [3 ]Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
                [4 ]Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
                University of Nevada School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: YYW YHL YNW.

                • Data curation: YYW.

                • Formal analysis: YYW.

                • Funding acquisition: YHL YNW HSC.

                • Investigation: YYW YLC YCL CYC.

                • Methodology: YYW YHL.

                • Project administration: YYW YHL YNW.

                • Supervision: YHL HSC.

                • Validation: YYW YHL YNW.

                • Visualization: YYW.

                • Writing – original draft: YYW YHL.

                • Writing – review & editing: YYW YHL.

                Article
                PGENETICS-D-16-02460
                10.1371/journal.pgen.1006715
                5398719
                28384194
                debc6a76-eee7-440c-85da-5c5e6c57eef5
                © 2017 Wang et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 November 2016
                : 24 March 2017
                Page count
                Figures: 10, Tables: 1, Pages: 19
                Funding
                This work was supported by grants from the Ministry of Science and Technolog (NSC 100-2314-B-030-001, NSC 101-2314-B-030-003). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Reproductive System
                Genital Anatomy
                Epididymis
                Medicine and Health Sciences
                Anatomy
                Reproductive System
                Genital Anatomy
                Epididymis
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Germ Cells
                Sperm
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Secretion
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Secretion
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Medicine and Health Sciences
                Clinical Genetics
                Genetic Diseases
                Autosomal Recessive Diseases
                Cystic Fibrosis
                Biology and Life Sciences
                Developmental Biology
                Fibrosis
                Cystic Fibrosis
                Medicine and Health Sciences
                Pulmonology
                Cystic Fibrosis
                Biology and Life Sciences
                Genetics
                Human Genetics
                Medicine and Health Sciences
                Urology
                Infertility
                Male Infertility
                Custom metadata
                vor-update-to-uncorrected-proof
                2017-04-20
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article