5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative stereostructure-activity studies on GABAA and GABAB receptor sites and GABA uptake using rat brain membrane preparations.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The affinities of a number of analogues of gamma-aminobutyric acid (GABA) for GABAA and GABAB receptor sites and GABA uptake were studied using rat brain membrane preparations. Studies on the (S)-(+)- and (R)-(-)-isomers of baclofen, 3-hydroxy-4-aminobutyric acid (3-OH-GABA), and 4,5-dihydromuscimol (DHM) revealed different stereoselectivities of these synaptic mechanisms in vitro. Although (S)-3-OH-GABA and, in particular, (S)-DHM were more potent than the corresponding (R)-isomers as inhibitors of GABAA binding, the opposite stereoselectivity was demonstrated for the GABAB binding sites. Thus, (R)-3-OH-GABA and (R)-baclofen were more potent than the (S)-isomers as inhibitors of GABAB binding, (R)-baclofen being some five times more potent than (R)-3-OH-GABA. These two (R)-isomers actually have opposite orientation of the substituents on the GABA backbones, suggesting that the lipophilic substituent of (R)-baclofen interacts with a structural element of the GABAB receptor site different from that that binds the very polar hydroxy group of (R)-3-OH-GABA. The O-methylated analogue of 3-OH-GABA, 3-methoxy-4-aminobutyric acid (3-OCH3-GABA), did not interact significantly with GABAB sites. The homologues of GABA, trans-4-aminocrotonic acid (trans-ACA), muscimol, and 3-OH-GABA, that is, 5-aminovaleric acid (DAVA), trans-5-aminopent-2-enoic acid, homomuscimol, and 3-hydroxy-5-aminovaleric acid (3-OH-DAVA), respectively, were generally much weaker than the parent compounds, whereas 2-hydroxy-5-aminovaleric acid (2-OH-DAVA) showed a significantly higher affinity for GABAB sites than the corresponding GABA analogue.(ABSTRACT TRUNCATED AT 250 WORDS)

          Related collections

          Author and article information

          Journal
          J. Neurochem.
          Journal of neurochemistry
          0022-3042
          0022-3042
          Sep 1986
          : 47
          : 3
          Article
          3016189

          Comments

          Comment on this article