+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Tissue-Engineered Vessel Strengthens Quickly under Physiological Deformation: Application of a New Perfusion Bioreactor with Machine Vision


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In order to develop a patent tissue-engineered blood vessel that grossly resembles native tissue, required culture times in most studies exceed 8 weeks. For the sake of shortening the maturation period of the constructs, we have used deformation as the basic index for mechanical environment control. A new bioreactor with a machine vision identifier was developed to accurately control the deformation of the construct during the perfusion process. Two groups of seeded constructs (n = 4 per group) were investigated in this study, with one group stimulated by a cyclic deformation of 10% and the other by a pulsatile pressure that gradually increased to 120 mm Hg (the control group). After 21 days of culture, the mechanical properties of the constructs were examined. The average burst strength and suture retention strength in the two groups were significantly different (t test, p < 0.05). For the experimental group, the average burst strength and suture retention strength were higher than those of the control group, by 31.6 and 23.4%, respectively. Specifically, the average burst strength of the constructs reached 1,402 mm Hg (close to that of the native vessel, i.e. 1,680 mm Hg) within a relatively short period of 21 days. In conclusion, deformation is an observable, controllable and very valuable index for mechanical environment control in vascular tissue engineering. It makes the control of mechanical stimuli more essential and experiments more comparable.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: not found
          • Article: not found

          Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation

            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.

            Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p < 0.05). Advantages of culturing constructs under mixed rather than static conditions included the maintenance of metabolic parameters in physiological ranges, 2-4 times higher construct cellularity (p &le 0.0001), more aerobic cell metabolism, and a more physiological, elongated cell shape. Cultivations in rotating bioreactors, in which flow patterns are laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue. Copyright 1999 John Wiley & Sons, Inc.
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue engineering of heart valves: in vitro experiences.

              Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced after pulsatile flow exposure.

                Author and article information

                J Vasc Res
                Journal of Vascular Research
                S. Karger AG
                December 2005
                20 October 2005
                : 42
                : 6
                : 503-508
                aDepartment of General Surgery, Shanghai Tenth People’s Hospital of Tongji University, bDepartment of Neurology, Shanghai First People’s Hospital of Shanghai Jiao Tong University, Shanghai and cDepartment of Orthopaedics, Second Affiliated Hospital of Harbin Medical University, Harbin, China
                88161 J Vasc Res 2005;42:503–508
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, References: 33, Pages: 6
                Research Paper


                Comment on this article