12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer.

          DOI: http://dx.doi.org/10.7554/eLife.09214.001

          eLife digest

          Mutations in genes play important roles in many types of cancer. However, mutations alone cannot explain all the biological changes that occur to cancer cells. For example, very few mutations have been linked with a type of kidney cancer called clear cell renal cell carcinoma (or ccRCC for short). Instead, scientists suspect that this cancer is largely caused by changes in the expression of particular genes so that certain cancer-promoting genes are more highly expressed, while other genes that would prevent tumor growth become less active.

          One of the few genes that is often mutated in ccRCC is called SETD2. This gene is involved in processes that alter the structure of DNA, but do not alter the genes themselves. These “epigenetic” changes can alter how the instructions in genes are used to make proteins. The first step in making proteins is to use a section of DNA as a template to make molecules of messenger ribonucleic acid (mRNA) in a process called transcription. There are markers within a gene that show where transcription should start and stop to produce the mRNA required to make a particular protein. Epigenetic changes can mask these markers so that the cell produces longer mRNAs that incorporate instructions from neighboring genes.

          It was not known how often these stop signs are ignored in ccRCC cells. Here, Grosso et al. compared transcription in normal cells and in ccRCC tumor cells from 50 different patients. The experiments show that more stop signs were ignored in many of the cancer cells, especially in cells with mutations in SETD2. This caused all or parts of neighboring genes to be transcribed along with the target gene and led to changes in the expression levels of these genes. For example, a cancer-promoting gene called BCL2 was more highly expressed in these cells.

          Furthermore, some of the mRNA molecules produced in these cancer cells may make “fusion” proteins that combine elements from several proteins. These fusion proteins may work differently to normal cell proteins and therefore might also promote the development of tumors. Grosso et al.’s findings reveal a new link between epigenetic changes and cancer.

          DOI: http://dx.doi.org/10.7554/eLife.09214.002

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A Language and Environment for Statistical Computing.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint

            Histone modifications establish the chromatin states that coordinate the DNA damage response. In this study, we show that SETD2, the enzyme that trimethylates histone H3 lysine 36 (H3K36me3), is required for ATM activation upon DNA double-strand breaks (DSBs). Moreover, we find that SETD2 is necessary for homologous recombination repair of DSBs by promoting the formation of RAD51 presynaptic filaments. In agreement, SETD2-mutant clear cell renal cell carcinoma (ccRCC) cells displayed impaired DNA damage signaling. However, despite the persistence of DNA lesions, SETD2-deficient cells failed to activate p53, a master guardian of the genome rarely mutated in ccRCC and showed decreased cell survival after DNA damage. We propose that this novel SETD2-dependent role provides a chromatin bookmarking instrument that facilitates signaling and repair of DSBs. In ccRCC, loss of SETD2 may afford an alternative mechanism for the inactivation of the p53-mediated checkpoint without the need for additional genetic mutations in TP53. DOI: http://dx.doi.org/10.7554/eLife.02482.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unravelling the means to an end: RNA polymerase II transcription termination.

              The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                17 November 2015
                2015
                : 4
                : e09214
                Affiliations
                [1]deptInstituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Lisboa, Portugal
                [2]University of Pennsylvania , United States
                [3]University of Pennsylvania , United States
                Author notes
                Author information
                http://orcid.org/0000-0001-5773-3211
                http://orcid.org/0000-0002-7774-1355
                Article
                09214
                10.7554/eLife.09214
                4744188
                26575290
                dec91fda-d1f1-4f2d-91bc-403c2b7096bf
                © 2015, Grosso et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 03 June 2015
                : 16 November 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001871, Fundação para a Ciência e a Tecnologia;
                Award ID: PTDC/BIM-ONC/0384-2012
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001871, Fundação para a Ciência e a Tecnologia;
                Award ID: SFRH/BD/92208/2013
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001871, Fundação para a Ciência e a Tecnologia;
                Award ID: SFRH/BD/52232/2013
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001871, Fundação para a Ciência e a Tecnologia;
                Award ID: IF/00510/2014
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Genes and Chromosomes
                Human Biology and Medicine
                Custom metadata
                2.5
                Transcription beyond annotated gene boundaries expands the diversity of the cancer transcriptome with overexpressed oncogenes and RNA chimeras.

                Life sciences
                clear cell renal cell carcinoma,transcription read-through,cancer genes,bcl2 oncogene,rna chimeras,human

                Comments

                Comment on this article