10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of Intraoperative Low Tidal Volume vs Conventional Tidal Volume on Postoperative Pulmonary Complications in Patients Undergoing Major Surgery : A Randomized Clinical Trial

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis.

          Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators.

            Postoperative pulmonary complications (PPCs), a leading cause of poor surgical outcomes, are heterogeneous in their pathophysiology, severity, and reporting accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial.

              The role of positive end-expiratory pressure in mechanical ventilation during general anaesthesia for surgery remains uncertain. Levels of pressure higher than 0 cm H2O might protect against postoperative pulmonary complications but could also cause intraoperative circulatory depression and lung injury from overdistension. We tested the hypothesis that a high level of positive end-expiratory pressure with recruitment manoeuvres protects against postoperative pulmonary complications in patients at risk of complications who are receiving mechanical ventilation with low tidal volumes during general anaesthesia for open abdominal surgery. In this randomised controlled trial at 30 centres in Europe and North and South America, we recruited 900 patients at risk for postoperative pulmonary complications who were planned for open abdominal surgery under general anaesthesia and ventilation at tidal volumes of 8 mL/kg. We randomly allocated patients to either a high level of positive end-expiratory pressure (12 cm H2O) with recruitment manoeuvres (higher PEEP group) or a low level of pressure (≤2 cm H2O) without recruitment manoeuvres (lower PEEP group). We used a centralised computer-generated randomisation system. Patients and outcome assessors were masked to the intervention. Primary endpoint was a composite of postoperative pulmonary complications by postoperative day 5. Analysis was by intention-to-treat. The study is registered at Controlled-Trials.com, number ISRCTN70332574. From February, 2011, to January, 2013, 447 patients were randomly allocated to the higher PEEP group and 453 to the lower PEEP group. Six patients were excluded from the analysis, four because they withdrew consent and two for violation of inclusion criteria. Median levels of positive end-expiratory pressure were 12 cm H2O (IQR 12-12) in the higher PEEP group and 2 cm H2O (0-2) in the lower PEEP group. Postoperative pulmonary complications were reported in 174 (40%) of 445 patients in the higher PEEP group versus 172 (39%) of 449 patients in the lower PEEP group (relative risk 1·01; 95% CI 0·86-1·20; p=0·86). Compared with patients in the lower PEEP group, those in the higher PEEP group developed intraoperative hypotension and needed more vasoactive drugs. A strategy with a high level of positive end-expiratory pressure and recruitment manoeuvres during open abdominal surgery does not protect against postoperative pulmonary complications. An intraoperative protective ventilation strategy should include a low tidal volume and low positive end-expiratory pressure, without recruitment manoeuvres. Academic Medical Center (Amsterdam, Netherlands), European Society of Anaesthesiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                JAMA
                JAMA
                American Medical Association (AMA)
                0098-7484
                September 01 2020
                September 01 2020
                : 324
                : 9
                : 848
                Affiliations
                [1 ]Department of Anesthesia, Austin Hospital, Melbourne, Victoria, Australia
                [2 ]Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
                [3 ]Department of Anesthesia, The University of Melbourne, Melbourne, Victoria, Australia
                [4 ]Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
                [5 ]Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
                [6 ]Department of Intensive Care, Amsterdam University Medical Centres, Location AMC, Amsterdam, the Netherlands
                [7 ]Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Victoria, Australia
                Article
                10.1001/jama.2020.12866
                32870298
                deca4019-e175-4214-b03a-3a80e6df17d1
                © 2020
                History

                Comments

                Comment on this article