80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered “A-particle”, which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ∼10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release.

          Author Summary

          In a picornavirus capsid structural integrity must not be compromised until a key mechanism triggers genome release into a permissive cell. It has long been established that the majority of members of the picornavirus family solve this dilemma with a two-step uncoating process initiated by receptor recognition. For human enteroviruses, binding of an entry receptor triggers a series of conformational changes, resulting in an “A-particle” that is primed for genome release. After endocytosis, an unknown trigger causes the A-particle to expel the viral genome, leaving behind an emptied capsid. This process can be mimicked in solution by heating mature virus. Though the capsid species for both of these steps have been isolated, the fine details of the uncoating process have yet to be elucidated. Cryo-electron microscopy reconstructions of the enterovirus 71 A-particle and empty capsid provide compelling structural evidence to suggest that the icosahedral two-fold axis opens a channel that acts as a gateway in the viral capsid, regulating the release of genomic material from the altered particle.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          An apparently new enterovirus isolated from patients with disease of the central nervous system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An overview of the evolution of enterovirus 71 and its clinical and public health significance.

            Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scavenger receptor B2 is a cellular receptor for enterovirus 71.

              Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. EV71, together with coxsackievirus A16 (CVA16), are most frequently associated with hand, foot and mouth disease (HFMD). Although HFMD is considered a mild exanthematous infection, infections involving EV71, but not CVA16, can progress to severe neurological disease, including fatal encephalitis, aseptic meningitis and acute flaccid paralysis. In recent years, epidemic and sporadic outbreaks of neurovirulent EV71 infections have been reported in Taiwan, Malaysia, Singapore, Japan and China. Here, we show that human scavenger receptor class B, member 2 (SCARB2, also known as lysosomal integral membrane protein II or CD36b like-2) is a receptor for EV71. EV71 binds soluble SCARB2 or cells expressing SCARB2, and the binding is inhibited by an antibody to SCARB2. Expression of human SCARB2 enables normally unsusceptible cell lines to support EV71 propagation and develop cytopathic effects. EV71 infection is hampered by the antibody to SCARB2 and soluble SCARB2. SCARB2 also supports the infection of the milder pathogen CVA16. The identification of SCARB2 as an EV71 and CVA16 receptor contributes to a better understanding of the pathogenicity of these viruses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2013
                March 2013
                21 March 2013
                : 9
                : 3
                : e1003240
                Affiliations
                [1 ]Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
                [2 ]Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
                Institut Pasteur, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KLS SH. Performed the experiments: KLS. Analyzed the data: KLS SH. Contributed reagents/materials/analysis tools: JLY MSC REA AMM JFC. Wrote the paper: KLS SH.

                Article
                PPATHOGENS-D-12-02085
                10.1371/journal.ppat.1003240
                3605244
                23555253
                ded31d63-514d-47af-be30-c5f26daf452e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 August 2012
                : 28 January 2013
                Page count
                Pages: 10
                Funding
                The work was funded by a Junior Faculty Research Scholar Award, The Max Lang Scholar Award from Pennsylvania State University College of Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Emerging Viral Diseases
                Viral Structure

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article