3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The relationship between facility-based malaria test positivity rate and community-based parasite prevalence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Malaria surveillance is a key pillar in the control of malaria in Africa. The value of using routinely collected data from health facilities to define malaria risk at community levels remains poorly defined.

          Methods

          Four cross-sectional parasite prevalence surveys were undertaken among residents at 36 enumeration zones in Kilifi county on the Kenyan coast and temporally and spatially matched to fever surveillance at 6 health facilities serving the same communities over 12 months. The age-structured functional form of the relationship between test positivity rate (TPR) and community-based parasite prevalence (PR) was explored through the development of regression models fitted by alternating the linear, exponential and polynomial terms for PR. The predictive ranges of TPR were explored for PR endemicity risk groups of control programmatic value using cut-offs of low (PR <5%) and high (PR ≥ 30%) transmission intensity.

          Results

          Among 28,134 febrile patients encountered for malaria diagnostic testing in the health facilities, 12,143 (43.2%: 95% CI: 42.6%, 43.7%) were positive. The overall community PR was 9.9% (95% CI: 9.2%, 10.7%) among 6,479 participants tested for malaria. The polynomial model was the best fitting model for the data that described the algebraic relationship between TPR and PR. In this setting, a TPR of ≥ 49% in all age groups corresponded to an age-standardized PR of ≥ 30%, while a TPR of < 40% corresponded to an age-standardized PR of < 5%.

          Conclusion

          A non-linear relationship was observed between the relative change in TPR and changes in the PR, which is likely to have important implications for malaria surveillance programs, especially at the extremes of transmission. However, larger, more spatially diverse data series using routinely collected TPR data matched to community-based infection prevalence data are required to explore the more practical implications of using TPR as a replacement for community PR.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum , 2000–17: a spatial and temporal modelling study

          Summary Background Since 2000, the scale-up of malaria control interventions has substantially reduced morbidity and mortality caused by the disease globally, fuelling bold aims for disease elimination. In tandem with increased availability of geospatially resolved data, malaria control programmes increasingly use high-resolution maps to characterise spatially heterogeneous patterns of disease risk and thus efficiently target areas of high burden. Methods We updated and refined the Plasmodium falciparum parasite rate and clinical incidence models for sub-Saharan Africa, which rely on cross-sectional survey data for parasite rate and intervention coverage. For malaria endemic countries outside of sub-Saharan Africa, we produced estimates of parasite rate and incidence by applying an ecological downscaling approach to malaria incidence data acquired via routine surveillance. Mortality estimates were derived by linking incidence to systematically derived vital registration and verbal autopsy data. Informed by high-resolution covariate surfaces, we estimated P falciparum parasite rate, clinical incidence, and mortality at national, subnational, and 5 × 5 km pixel scales with corresponding uncertainty metrics. Findings We present the first global, high-resolution map of P falciparum malaria mortality and the first global prevalence and incidence maps since 2010. These results are combined with those for Plasmodium vivax (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The P falciparum estimates span the period 2000–17, and illustrate the rapid decline in burden between 2005 and 2017, with incidence declining by 27·9% and mortality declining by 42·5%. Despite a growing population in endemic regions, P falciparum cases declined between 2005 and 2017, from 232·3 million (95% uncertainty interval 198·8–277·7) to 193·9 million (156·6–240·2) and deaths declined from 925 800 (596 900–1 341 100) to 618 700 (368 600–952 200). Despite the declines in burden, 90·1% of people within sub-Saharan Africa continue to reside in endemic areas, and this region accounted for 79·4% of cases and 87·6% of deaths in 2017. Interpretation High-resolution maps of P falciparum provide a contemporary resource for informing global policy and malaria control planning, programme implementation, and monitoring initiatives. Amid progress in reducing global malaria burden, areas where incidence trends have plateaued or increased in the past 5 years underscore the fragility of hard-won gains against malaria. Efforts towards elimination should be strengthened in such areas, and those where burden remained high throughout the study period. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An in vitro toolbox to accelerate anti-malarial drug discovery and development

            Background Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. Methods Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC–MS/MS. Results Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. Conclusions This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug–drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Profile: The Kilifi Health and Demographic Surveillance System (KHDSS)

              Summary The Kilifi Health and Demographic Surveillance System (KHDSS), located on the Indian Ocean coast of Kenya, was established in 2000 as a record of births, pregnancies, migration events and deaths and is maintained by 4-monthly household visits. The study area was selected to capture the majority of patients admitted to Kilifi District Hospital. The KHDSS has 260 000 residents and the hospital admits 4400 paediatric patients and 3400 adult patients per year. At the hospital, morbidity events are linked in real time by a computer search of the population register. Linked surveillance was extended to KHDSS vaccine clinics in 2008. KHDSS data have been used to define the incidence of hospital presentation with childhood infectious diseases (e.g. rotavirus diarrhoea, pneumococcal disease), to test the association between genetic risk factors (e.g. thalassaemia and sickle cell disease) and infectious diseases, to define the community prevalence of chronic diseases (e.g. epilepsy), to evaluate access to health care and to calculate the operational effectiveness of major public health interventions (e.g. conjugate Haemophilus influenzae type b vaccine). Rapport with residents is maintained through an active programme of community engagement. A system of collaborative engagement exists for sharing data on survival, morbidity, socio-economic status and vaccine coverage.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Project administrationRole: Supervision
                Role: Project administrationRole: Supervision
                Role: Formal analysisRole: MethodologyRole: Validation
                Role: ConceptualizationRole: Funding acquisitionRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 October 2020
                2020
                : 15
                : 10
                : e0240058
                Affiliations
                [1 ] KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
                [2 ] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
                [3 ] Ministry of Health, Kilifi County Government, Kilifi, Kenya
                Universidade Federal de Minas Gerais, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-9846-5372
                http://orcid.org/0000-0003-3725-6088
                Article
                PONE-D-20-13643
                10.1371/journal.pone.0240058
                7540858
                33027313
                ded751bf-33c9-4aad-8779-ebdcc6676162
                © 2020 Kamau et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 May 2020
                : 17 September 2020
                Page count
                Figures: 3, Tables: 4, Pages: 17
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Award ID: 103602
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100010269, Wellcome Trust;
                Award ID: 212176
                Award Recipient :
                Funded by: DELTAS Africa Initiative
                Award ID: DEL-15-003
                Award Recipient :
                This work was supported through support to RWS as part of his Wellcome Trust Principal Fellowship (103602 and 212176) and support to AK through the DELTAS Africa Initiative [DEL-15-003]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency with funding from the Wellcome Trust [107769] and the UK government. All authors are grateful to the support of the Wellcome Trust to the Kenya Major Overseas Programme (203077). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Parasitic Diseases
                Malaria
                Medicine and Health Sciences
                Medical Conditions
                Tropical Diseases
                Malaria
                Medicine and Health Sciences
                Health Care
                Health Care Facilities
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Fevers
                Physical Sciences
                Mathematics
                Algebra
                Polynomials
                People and Places
                Population Groupings
                Age Groups
                Biology and Life Sciences
                Organisms
                Eukaryota
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Infectious Disease Control
                Medicine and Health Sciences
                Public and Occupational Health
                Custom metadata
                Data that support the findings of this study cannot be shared publicly because it includes homestead level coordinates as an essential component and these are personal identifiable data. These data are available through a formal requesting process to the KEMRI Institutional Data Access/Ethics Committee. The details of the guidelines can be found in the KEMRI Wellcome website ( https://kemri-wellcome.org/about-us/#ChildVerticalTab_15). Access to data is provided via the KEMRI Wellcome Data Governance Committee: dgc@ 123456kemri-wellcome.org .

                Uncategorized
                Uncategorized

                Comments

                Comment on this article